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Abstract:

Neuropathic pain is the most common chronic complication of diabetes mellitus. The mechanisms involved in the development of

diabetic neuropathy include changes in the blood vessels that supply the peripheral nerves; metabolic disorders, such as the enhanced

activation of the polyol pathway; myo-inositol depletion; and increased non-enzymatic glycation. Currently, much attention is fo-

cused on the changes in the interactions between the nervous system and the immune system that occur in parallel with glial cell acti-

vation; these interactions may also be responsible for the development of neuropathic pain accompanying diabetes. Animal models

of diabetic peripheral neuropathy have been utilized to better understand the phenomenon of neuropathic pain in individuals with

diabetes and to define therapeutic goals. The studies on the effects of antidepressants on diabetic neuropathic pain in streptozotocin

(STZ)-induced type 1 diabetes have been conducted. In experimental models of diabetic neuropathy, the most effective antidepres-

sants are tricyclic antidepressants, selective serotonin reuptake inhibitors, and serotonin norepinephrine reuptake inhibitors. Clinical

studies of diabetic neuropathy indicate that the first line treatment should be tricyclic antidepressants, which are followed by anticon-

vulsants and then opioids. In this review, we will discuss the mechanisms of the development of diabetic neuropathy and the most

common drugs used in experimental and clinical studies.
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Introduction

The World Health Organization estimates that the

global prevalence of diabetes is currently approaching

5%; thus, this disease can be called an epidemic of the

21st century. Diabetes is considered a major cause of

mortality and morbidity [56], and statistically, diabetic

neuropathy is the second most common cause of post-

traumatic nerve damage [23]. Therefore, clinical reality

suggests the need for the effective treatment of neuro-

pathic pain accompanying diabetes. There are three

main types of diabetes: insulin-dependent diabetes

mellitus (type 1), non-insulin-dependent diabetes mel-

litus (type 2) and gestational diabetes. Diabetes melli-

tus is a group of metabolic diseases characterized by

high blood glucose concentration, frequent urination,

and increased thirst and hunger. Thus, diabetes is one

of the leading causes of neuropathy worldwide. Dia-

betic neuropathy is not always painful, however, 12%

of all diabetic patients are affected with symptomatic

painful diabetic neuropathy [44], the most common

chronic and earliest occurring complication. Diabetic

neuropathy affects all peripheral nerves including pain
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fibres, motor neurons and the autonomic nervous sys-

tem [44]. The pathogenesis of diabetic neuropathy is

complicated, and the mechanism of this disease re-

mains poorly understood. It has been suggested that

hyperglycemia is responsible for changes in the nerve

tissue [56]. There are two main suppositions of this

proposed mechanism: vascular and metabolic [10]. The

current hypothesis suggests that neuroimmune interac-

tions actively contribute to the onset and persistence of

pain in diabetes [3]. In addition, the participation of

glial cells in the processes accompanying the develop-

ment of diabetic neuropathic pain has been recently in-

vestigated [41]. Therefore, to better understand the

mechanisms underlying the development of painful

diabetic neuropathy, animal models of diabetes type 1

and diabetes type 2 have been used to explore this dis-

ease entity [60].

The drugs currently used for the treatment of dia-

betic neuropathic pain include antidepressants, such

as tricyclic antidepressants or duloxetin [4]; anticon-

vulsants, such as pregabalin [12]; and typical analge-

sics, such as tapentadol [45], and these may be used

individually or in combination [25, 67]. However,

knowledge concerning the pathogenesis of diabetic

neuropathic pain is not sufficient to propose an effi-

cient therapy for the long-lasting reduction of pain

symptoms and increase the satisfaction of diabetic pa-

tients. The use of typical painkillers is not satisfactory

in alleviating neuropathic pain, further supporting at-

tempts to develop improved pain-relieving methods.

Therefore, in this review, we will discuss the puta-

tive mechanisms for the development of diabetic neu-

ropathy and the involvement of glial cells in this pro-

cess based on observations from in vivo models. We

will also describe studies of the most frequently used

drugs for the relief of diabetic neuropathic pain in the

clinic and in animal diabetic neuropathic pain models.

Mechanisms of diabetic neuropathy

development

The pathological mechanisms implicated in diabetic

neuropathy, include microvascular damage, metabolic

disorders, and changes in the interactions between

neuronal and immunological systems in parallel with

glial cell activation [14, 35, 42].

Changes in the blood vessels supplying the periph-

eral nerves underlie the mechanisms involved in

microvascular damage and hypoxia. These changes

are based on increases in wall thickness with the hya-

linization of the vessel walls and the basal lamina of

arterioles and capillaries, leading to nerve ischemia

[42]. Through revised primary capillary membrane to

the endoneurium penetrates the plasma protein, caus-

ing swelling and increased interstitial pressure in the

nerves as well as capillary pressure, fibrin deposition

and thrombus formation [10]. Pathological studies of

the proximal and distal segments of the nerve have

shown multifocal fibre loss along the length of the

nerves, suggesting ischemia as a pathogenetic con-

tributor [15].

Metabolic disorders are the primary cause of dia-

betic neuropathy. A hyperglycemic state accompany-

ing diabetes type 1, which is induced through de-

creased insulin secretion, is responsible for the en-

hanced activation of the polyol pathway (Fig. 1). In

the hyperglycemic state, the affinity of aldose reduc-

tase for glucose is increased, leading to the increased

production of sorbitol. Sorbitol does not cross cell

membranes and accumulates intracellularly in the

nervous tissue, thus generating osmotic stress. Os-

motic stress increases the intracellular fluid molarity

as well as water influx, Schwann cell damage and

nerve fibre degeneration [38]. Furthermore, up-

regulation of the NADPH oxidase complex results in

oxidative stress through reduced glutathione produc-

tion, decreased nitric oxide concentrations and in-

creased reactive oxygen species concentrations

(Fig. 1) [31]. Free radicals, oxidants, and some uni-

dentified metabolic factors activate the nuclear en-

zyme poly(ADP-ribose) polymerase (PARP), which is

a fundamental mechanism in the development of dia-

betic complications, including neuropathy [14].

Moreover, a nitric oxide deficit and increased oxygen

free radical activity are responsible for microvascular

damage and hypoxia [35].

Myo-inositol depletion also causes diabetic neuropa-

thy. Excess sorbitol accumulates in nervous tissue,

which leads to and causes osmotic stress and tissue

damage. Simultaneously, decreases in the concentra-

tion of myo-inositol reduce ATP-ase Na+/K+ activity,

which is important in impulse conduction. Under nor-

mal conditions, the myo-inositol content is approxi-

mately 30-fold higher in peripheral nerves than in

plasma [8]. In the nerve, 20% of the myo-inositol is

bound to phosphoinositides, which are associated with
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cell membrane phospholipids. The remaining pool of

myo-inositol in the nerves is present in a free/unbound

form. Phosphoinositides are metabolically active cell

phospholipids associated with the cell membrane. The

phosphatidylinositol cycle involves the transformation

of phospholipids accompanied by cell activation, and

this cycle is important for the conduction of nerve im-

pulses [16]. Under normal conditions, the Na+/K+

ATP-ase activity in the nerve maintains a lower con-

centration of sodium in the peripheral nerves compared

to the plasma [27]. In diabetes, myo-inositol deficiency

is observed in the nerves, resulting from the inhibition

of the sodium-dependent uptake of myo-inositol and

severe changes to the polyol pathway. The reduced

myo-inositol concentration causes the insufficiency of

renal ATP-ase Na+/K+, the enzyme necessary to gener-

ate nerve depolarization (Fig. 1). As a result, the con-

duction of stimuli is reduced [10, 52]. Sundkvist et al.

showed that high myo-inositol levels are associated

with nerve regeneration, despite the low levels of this

polyol observed in diabetic patients in the clinic.

Therefore, the elevation of myo-inositol levels might

be considered a compensatory mechanism to prevent

nerve damage [51].

Increased non-enzymatic glycation/glycoxidation

(glycation processes involving oxidation) of proteins

also plays an important role in the development of

diabetic neuropathy (Fig. 1) [54]. In a hyperglycemic

state, the increased levels of glucose and fructose re-

sult in covalent binding of these sugars to proteins,

nucleotides or lipid molecules without control by an

enzyme. This process applies to the structural proteins

of the nerve and the blood vessels supplying these

nerves, and the products of these transformations, ad-

vanced glycation products (AGE), alter cellular func-

tions. AGEs cause a number of disorders, including

focal thrombus formation and vasoconstriction, and

affect cellular DNA. Furthermore, protein glycation

might decrease cytoskeletal assembly, induce protein

aggregation, and provide ligands for cell surface re-

ceptors [54]. AGE microcirculation leads to changes

in the vessels resulting from prior hyperglycemic con-

ditions, as the level of AGEs is not decreased by nor-

moglycemia. Furthermore, AGEs have been impli-

cated in the formation of free radicals. The induction

of the non-enzymatic glycation structural proteins of

nerve fibres leads to excessive rigidity and impaired

axonal transport [5] because tubulin glycation leads to

the inhibition of GTP-dependent tubulin polymeriza-

tion [62]. AGEs have been identified not only in mye-

linated and unmyelinated fibres but also in the peri-

neurium, endothelial cells, and pericytes of endoneu-

rial microvessels. Moreover, the receptors for

advanced glycation (RAGE) and glycation products

are expressed in peripheral neurons [54]. Interactions

between macrophages and AGE-myelin might also

influence or contribute to the segmental demyelina-

tion associated with diabetic neuropathy [57].

A growing body of evidence indicates that the acti-

vation of non-neuronal cells (microglia, astrocytes
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Fig. 1. Multifactorial etiology of dia-
betic neuropathy. Hyperglycemia leads
to enhanced activation of the polyol
pathway, oxidative stress and non-
enzymatic glycation. These factors ei-
ther interact or independently function
toward the development of diabetic
neuropathy, directly affecting nerve tis-
sues or nutrient vascular tissues [31,
38, 52, 54]



and immune cells) plays an important role in the de-

velopment of neuropathic pain [34], and these cells

are activated under hyperglycemic conditions in the

spinal cord [11, 55]. Studies have shown that glia

strongly influence the synaptic communication be-

tween neurons, leading to pathological pain [58]. Sev-

eral studies have shown that in the spinal cord, acti-

vated microglia play a crucial role in neuropathic pain

through the release of proinflammatory cytokines,

which are common mediators of allodynia and hyper-

algesia (Fig. 2) [34, 58]. Recent reports suggest the

involvement of proinflammatory factors derived from

activated microglia in diabetes-induced allodynia [55,

68] and the involvement of the p38 MAPK pathway

in dorsal horn microglia in diabetes-induced hyperal-

gesia [11]. There are many reports implicating the re-

lease of pro-inflammatory cytokines from glia and

immune cells as a pathomechanism for neuropathic

pain of different origins. In rats, painful neuropathy

accompanies type 1 diabetes and is associated with

the release of pro-inflammatory cytokines, such as

IL-1b, IL-6 and TNFa [3], while a decrease in insulin

production causes the increased release of metallopro-

teinase MMP-9 and monocyte chemotactic protein-1

(MCP-1) [49]. Active glial cells, particularly micro-

glia, which are resident macrophages of the central

nervous system, are responsible for signalling be-

tween components of the nervous and immune sys-

tems. Pabreja et al. [41] showed that microglia might

be responsible for the initiation of neuropathic pain

states. Similar results in rat models of diabetic neuro-

pathy have demonstrated that the pre-emptive admini-

stration of minocycline attenuates the development of

pain that is associated with decreased levels of IL-1b

and TNFa. These results support the hypothesis that

spinal microglia become activated under hyperglyce-

mic conditions, leading to the elevation of proinflam-

matory cytokines and oxidative stress. Moreover,

Bishnoi et al. observed significantly increased levels

of proinflammatory cytokines (IL-1b, IL-6, and

TNFa) in the spinal cord in a rat model of diabetes in-

duced through streptozotocin (STZ) administration

[3]. Thus, the initiation of the pain process during dia-

betic neuropathy is mediated through proinflamma-

tory cytokines, such as TNFa, IL-1b, IL-2, and IL-6,

that are released from activated microglia.

The determination of the role of numerous immune

factors released during diabetic neuropathy from

nerve and immune cells will broaden our understand-

ing of the underlying pathomechanisms. For this rea-

son, it is important to understand how glial cell acti-

vation products, particularly those released from mi-

croglia, influence the development of neuropathic

pain in diabetic neuropathy and whether the inhibition

of glia activation affects the release of pro- and anti-

inflammatory cytokines, thus reducing pain.

Diabetic neuropathy – experimental

studies

Animal models of diabetic neuropathy

Diabetic peripheral neuropathy is one of the most

common consequences of diabetes and might be asso-

ciated with diabetes type 1 and type 2. The mecha-
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nism of this neurological impairment remains un-

known, and the proposed therapies are inefficient.

Animal models of diabetic peripheral neuropathy pro-

vide a better opportunity to study this phenomenon

and determine therapeutic goals. In 2012, Wattiez et

al. [60] demonstrated that it is possible to study diabe-

tes using experimental diabetic models of neuropathic

pain from both type 1 and 2 (Tab. 1). A PubMed

search using the keywords “diabetic neuropathy”

yields 20,350 results published between 1945 and

2013, whereas a search with “diabetic neuropathy in

animal model” yields 1,865 results published between

1964 and 2013. The development of good models to

study this phenomenon facilitates the characterization

of the pathology of these diseases and the identifica-

tion of molecular targets, parallel with pharmacologi-

cal strategies for improving clinical care.

Pharmacology of experimental diabetic

neuropathy

Antidepressants

We have identified a number of studies on the role of

antidepressants in STZ-induced diabetes type 1, but in-

formation concerning the potential influence of antide-

pressants in other animal models of diabetic neuro-

pathic pain, as shown in Table 1, is still lacking. The

best studied antidepressants in animal models of dia-

betic neuropathy are tricyclic antidepressants, which

are first line therapies for the clinical treatment of dia-

betic neuropathic pain. Many studies have demon-

strated the antiallodynic and antihyperalgesic effects of

amitriptyline, the most common antidepressant tested

in the STZ-induced diabetic neuropathic pain model.

Using an STZ pain model, Yamamoto et al. showed

that a single oral administration of amitriptyline was

ineffective in diminishing allodynia in the early phase

of diabetes; however, amitriptyline treatment was ef-

fective when the disease was fully developed [66].

Thus, many studies have shown contradictory results

concerning the administration of amitriptyline and the

extent of diabetes. For example, the acute intraperito-

neal administration of amitriptyline in diabetic rats also

exhibited major effects on thermal allodynia and me-

chanical hyperalgesia [2]. However, the results of other

studies have suggested that amitriptyline does not at-

tenuate mechanical allodynia, even after chronic ad-

ministration [28]. Treatment with clomipramine and

desipramine induces weak analgesia in STZ-induced

diabetic hyperalgesia [9]. Other classical TCAs (imi-

pramine, doxepin, and nortriptyline) or TeCAs (amoxa-

pine and maprotiline) have not been tested in an animal

model of diabetic neuropathy.

Currently, a large number of studies have been fo-

cused on the role of SSRIs and SNRIs in STZ-induced

diabetic neuropathy. Some results have shown that

fluoxetine (SSRI) attenuates thermal hyperalgesia in

mice [1]. Tembhurne and Sakarkar demonstrated that

chronic treatment (9 weeks) with fluoxetine reduces

pain perception in rats [53]. In contrast, Sounvora-

vong et al. demonstrated that fluoxetine alone shows

no effect in the von Frey and tail-pinch tests, but the

co-administration of this compound with morphine

significantly enhanced its antinociceptive and antial-

lodynic effects in mice [50]. The SSRIs fluvoxamine

and paroxetine exhibit antiallodynic effects in the rats
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Tab. 1. Experimental rodent models of diabetic neuropathic pain [60]

TYPE 1

• Spontaneous-induced diabetes

Type 1 diabetic insulinopenic BB/Worchester Rats

NOD Mice

LETL Rats

Akita Mice spontaneous type 1 diabetes

• Chemo-induced pancreatic toxicity

Streptozotocin-induced diabetes

Alloxan-induced diabetes

TYPE 2

• Spontaneous-induced diabetes

Type 2 diabetic hyperinsulinemic BBZDR / Worchester Rats

Tsumura Suzuki Obese Diabetes (TSOD) mice

Otsuka Long-Evans Tokushima Fatty (OLETF)

• Dietary-induced diabetes

High-fat diet-fed mice

• Genetic-induced diabetes

Zucker diabetic fatty rat

Obese leptin-deficient (ob/ob) mice

Leptin receptor-deficient (db/db) mice

Nonobese diabetic mice – Goto-Kakizaki strain

• Stress-induced diabetes

• Streptozotocin/high fat diet model of type 2 diabetes



[22]. These authors also showed that the intrathecal

administration of milnacipran (SNRI) produced anti-

allodynic effects in a dose-dependent manner [22]. In

our studies, using a single injection of milnacipran in

mice 7 days after STZ administration, a slight de-

crease in neuropathic pain syndromes, such as allo-

dynia and hyperalgesia, was observed. Other re-

searchers have demonstrated that chronic intraperito-

neal injection with milnacipran and duloxetine

reduced mechanical hyperalgesia in diabetic rats [59].

This result has been associated with increasing levels

of adenosine, suggesting the involvement of the

adenosinergic pathway in the antinociceptive effect of

duloxetine [26]. Other studies have also shown that

the systemic and spinal, but not peripheral, admini-

stration of duloxetine alleviates tactile allodynia in

rats [36]. Another SNRI, venlafaxine, exhibited sig-

nificant effects on thermal allodynia and mechanical

hyperalgesia in rat diabetic neuropathic pain models

[2]. Venlafaxine also increased the analgesic activity

of morphine with acute co-administration, but in

chronic treatment, this compound attenuated opioid

efficacy in STZ-induced hyperalgesia [6].

There are other antidepressants that have not been

tested in animal models of diabetic neuropathy, includ-

ing the SSRI escitalopram; the SNRI desvenlafaxine;

MAOIs, such as harmaline, iproclozide, iproniazid,

isocarboxazid, toloxatone, tranylcypromine, nialamide,

and moclobemide; and atypical antidepressants, such

as bupropion, trazodone, mirtazapine and nefazodone.

Anticonvulsants

Anticonvulsants have also been studied for treatment

of diabetic neuropathy. Anticonvulsants can be di-

vided into three groups. The first group includes CaV

channel a2d subunit ligands, such as pregabalin and

gabapentin. The antiallodynic and analgesic effects of

these drugs involve ligand binding to the a2d-1

subunit of the CaV2.X. Martinez et al. showed that

pregabalin relieves mechanical allodynia and thermal

hyperalgesia in a rat STZ-induced diabetic pain

model. Furthermore, the effect of pregabalin was lim-

ited by the suppression of CaVa2d-1 expression in

the spinal dorsal horn under conditions of neuropathic

pain [30]. Gabapentin not only attenuated mechanical

allodynia but also reduced microglia activation in

a rat STZ-induced diabetic neuropathy model [64].

A second type of blockers includes the N-type CaV

channels (CaV2.2) leconotide and ziconotide, which

have shown dose-dependent analgesic activity after

intravenous administration in a diabetic neuropathic

pain model [24].

The dose-dependent reduction of mechanical allo-

dynia through treatment with the sodium channel

blockers lidocaine and mexiletine was demonstrated

in a rat STZ model of diabetic neuropathy [33, 66].

Moreover, Mert and Gunes [33] showed that antino-

ciceptive effects from A803467, a highly selective

blocker of Nav1.8 channels, are observed in diabetic

rats with painful neuropathy. Studies on primary sen-

sory neurons have demonstrated that a number of an-

tidepressants, including the tricyclic antidepressants

amitriptyline, nortriptyline, imipramine, desipramine,

and maprotiline, evoke effects through sodium chan-

nel blocking, thereby contributing to the antihyperal-

gesic efficacy of these compounds [13].

Opioids

Although there is a large consensus on effectiveness of

opioid drugs in nociceptive pain, the efficacy of these

compounds in neuropathic pain has, until recently,

been a matter of debate. Nielsen et al. [37] showed hy-

poresponsiveness to morphine in STZ-diabetic rats

with long-term diabetes, however, in STZ-diabetic

mice tapentadol was more effective than morphine in

attenuating heat hyperalgesia, but both opioids reduce

heat-induced nociception in dose-dependent manner

[7]. In STZ-induced diabetic models, the decreased

antiallodynic effect of morphine has been associated

with a decrease in the release of specific endogenous

opioids and impaired G-protein coupling to µ-opioid

receptors [61]. The influence of the modulation of glial

activity on the analgesic effects of morphine in neuro-

pathic pain has been recently studied [34]. Our recent

data suggested that the activation of microglial cells

enhanced proinflammatory cytokine expression in the

spinal cord, and changes in neuroimmune interactions

are involved in the development of morphine tolerance

in diabetic neuropathy [68].

Diabetic neuropathy – clinical studies

Types of diabetic neuropathy

There are no neurophysiological or morphological dif-

ferences between patients with type 1 and type 2 diabe-
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tes nor between diabetic patients with and without

painful neuropathy [29]. Some people with diabetes

have nerve damage without signs, others over time,

may have symptoms such as tingling, numbness, loss

of feeling or pain. Nerve problems can occur in every

organ system, and therefore, diabetic neuropathy can

be classified as peripheral, autonomic, proximal, or fo-

cal. The most common type of diabetic neuropathy is

peripheral neuropathy, which causes pain or loss of

feeling in the toes, feet, legs, hands, and arms. The

autonomic neuropathy causes changes in digestion,

bowel and bladder function, sexual response, and per-

spiration. It can also affect the nerves that serve the

heart and control blood pressure, as well as nerves in

the lungs and eyes. The proximal neuropathy causes

pain in the thighs, hips, or buttocks and leads to weak-

ness in the legs. The focal neuropathy results in the

sudden weakness of one nerve or a group of nerves,

causing muscle weakness or pain [65].

Pharmacology of diabetic neuropathy

Diabetic neuropathic pain treatment is difficult be-

cause no specific relief medication is available. The

American Diabetes Association recommends the use

of tricyclic antidepressants, followed by anticonvul-

sants and opioids, such as tapentadol or oxycodone. In

addition, maintenance of blood sugar levels within

a narrow target range might delay the progression of

peripheral neuropathy.

Antidepressants

Tricyclic antidepressants (TCAs) have been shown to

be effective for symptomatic pain relief in diabetic

neuropathy and are used in 40% of cases [4, 21, 32,

47]. TCAs inhibit norepinephrine and/or serotonin re-

uptake within the central nervous system. Thus,

TCAs, such as amitriptyline, nortriptyline, desi-

pramine and imipramine, might provide relief for

mild to moderate symptoms of pain, but these com-

pounds might also cause a number of side effects, in-

cluding dry mouth, sweating, sedation and dizziness.

Max et al. [32] showed that amitriptyline is effective

in alleviating the pain resulting from diabetic neuro-

pathy, and the efficacy of this compound has also

been confirmed in other studies [4]. Other TCAs, such

as imipramine and desipramine, have demonstrated

effectiveness in reducing the pain associated with dia-

betes [47]. Desipramine relieves diabetic neuropathy

pain with an efficacy similar to that of amitriptyline

[32]. Combined treatment with nortriptyline and

fluphenazine has produced a significant reduction of

pain in patients with diabetic polyneuropathy [18].

There are no available data concerning the clinical use

of doxepin or tetracyclic antidepressants (TeCAs),

such as amoxapine and maprotiline, which also re-

lieve diabetic neuropathic pain.

Some antidepressants from the selective serotonin

reuptake inhibitor (SSRI) family have also been used

to treat diabetic neuropathy. Although Max et al. [32]

showed that fluoxetine is not effective in patients with

diabetic neuropathy, but the significant analgesic ef-

fects of other SSRIs, such as citalopram and paroxe-

tine, have been recently demonstrated in two minor

trials (20 and 15 patients) [48]. Otto et al. [40] showed

that escitalopram was effective in 41 patients with

painful diabetic neuropathy. The use of fluvoxamine

to relieve the pain associated with diabetic neuropathy

has been demonstrated in a single case concerning

a 48-year-old man with a 14-year history of type 2

diabetes [39].

The serotonin and norepinephrine reuptake inhibi-

tors (SNRIs) are also used in the clinic, despite their

adverse effects. The antidepressant duloxetine is ef-

fective in relieving the pain associated with diabetic

neuropathy, and there was no significant difference in

analgesic efficacy between amitriptyline and duloxe-

tine [4]. Rowbotham et al. [43] showed that venlafax-

ine moderately reduced pain in patients with painful

diabetic neuropathy. Furthermore, patients with dia-

betic neuropathy who have not responded to gabapen-

tin experienced pain relief upon the addition of venla-

faxine, as the combination was moderately effective

[46]. There is no information concerning the potential

analgesic effects of other SNRIs, such as desvenlafax-

ine or milnacipran, in diabetic neuropathy in the

clinic, although experimental studies have revealed

positive effects (discussed in the next chapter).

Monoamine oxidase inhibitors (MAOIs), including

harmaline, iproclozide, iproniazid, isocarboxazid,

toloxatone, tranylcypromine, nialamide and moclobe-

mide, have not been tested in clinical trials for any type

of neuropathic pain, including diabetic neuropathy.

Some research studies have focused on the role of

atypical antidepressants in reducing painful diabetic

neuropathy syndromes. Wilson [63] examined 31

adult diabetic patients with painful distal polyneuro-

pathy and showed that low doses of trazodone (50–

100 mg/day) are effective treatment option. Nefazo-
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done was effective in ameliorating the pain, paresthe-

sias, and numbness associated with diabetic neuropa-

thy [19]. Other atypical antidepressants, such as mir-

tazapine and bupropion, have not been examined in

clinical trials for the treatment of diabetic neuropathy;

however, there is some experimental evidence sup-

porting the use of these compounds.

Anticonvulsants

Drugs such as gabapentin and pregabalin, which are

typically used to treat seizure disorders, have also

been prescribed for diabetic neuropathic pain and are

used in 25% of cases [21]. Studies [12, 25, 67] have

shown that monotherapy with gabapentin or prega-

balin produces clinically and subjectively meaningful

pain relief in patients with painful diabetic neuropa-

thy. Moreover, the co-administration of gabapentin

with morphine and oxycodone results in improved an-

algesic effects at lower doses than treatment with ei-

ther drug alone [17, 20]. Zin et al. [67] showed that

pregabalin did not enhance the effectiveness of oxy-

codone in diabetic neuropathy.

Opioids

Opioid analgesics, such as tapentadol [45], oxyco-

done [20] or morphine [17] might also be used to re-

lieve diabetic neuropathic pain, however, are used

alone only in 7% of cases [21].

Summary

Diabetic neuropathic pain treatment is difficult be-

cause no specific relief medications are available, and

the pathomechanism of diabetic neuropathic pain de-

velopment is multidirectional and complicated. Many

animal models of diabetes have been developed to

better understand this disease, and more studies are

needed to examine the potential role of antidepres-

sants in diabetes treatment, as only the STZ-model

has been well studied. As shown in this review, the

mechanisms of the pathogenesis implicated in dia-

betic neuropathy include microvascular damage,

metabolic disorders, and changes in the interaction

between the neuronal and immunological systems as-

sociated with glial cell activation. The current medi-

cations used to reduce neuropathic pain syndromes

during diabetes are not sufficient. Therefore, an in-

creased understanding of neuroimmune interactions

might provide new possibilities for the development

of innovative therapies, particularly polytherapies,

which can be successfully used in the clinic.
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