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Abstract:

Recently, it has been proposed that abnormalities in neuronal structural plasticity may underlie the pathogenesis of major depression,

resulting in changes in the volume of specific brain regions, including the hippocampus (HIP), the prefrontal cortex (PC), and the

amygdala (AMY), as well as the morphology of individual neurons in these brain regions. In the present survey, we compile the data

regarding the involvement of the neural cell adhesion molecule (NCAM) protein and its polysialylated form (PSA-NCAM) in the

pathogenesis of depression and the mechanism of action of antidepressant drugs (ADDs). Elevated expression of PSA-NCAM may

reflect neuroplastic changes, whereas decreased expression implies a rigidification of neuronal morphology and an impedance of dy-

namic changes in synaptic structure. Special emphasis is placed on the clinical data, genetic models, and the effects of ADDs on

NCAM/PSA-NCAM expression in the brain regions in which these proteins are constitutively expressed and neurogenesis is not

a major factor; this emphasis is necessary to prevent cell proliferation and neurogenesis from obscuring the issue of brain plasticity.
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Introduction

The monoaminergic hypothesis that antidepressants

(ADDs) act via inhibition of monoamine uptake has

been called into question [30]. First, the pharmacol-

ogical effect of these drugs, i.e., the blockade of sero-

tonin and noradrenaline uptake, is not clearly associ-

ated with their clinical efficacy [30]. Moreover, the

novel antidepressant (ADD) tianeptine is actually

a serotonin reuptake enhancer [32]. In addition, the

direct, rapid effect of ADDs on monoamines contrasts

with the delayed onset of effectiveness of ADDs in

the clinic [30]. Recent theories on the pathogenesis of

major depression suggest that changes in neuronal

plasticity may be responsible for the appearance of

depressive symptoms and that ADDs alleviate symp-

toms by interfering with the mechanism responsible

for plasticity of neuronal morphology [36]. These

changes may reflect alterations in neuronal structure,
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leading to disturbances in the balance of excitatory

and inhibitory neurotransmission [15]. It has been

demonstrated in animal models that chronic stress

[35, 36] induces dendritic atrophy and reductions in

spine density in principal neurons of the hippocampus

(HIP) [31] and the medial prefrontal cortex (PC) [40].

Although it is not known whether prolonged stress is

sufficient to evoke depression, it is often considered

as a precipitating factor for depression in humans.

Nevertheless, when chronic stress models are used

with an understanding of the limitations, they can pro-

vide powerful information about the underlying mo-

lecular and cellular determinants of anatomical altera-

tions in neuronal circuitry, which controls complex

stress-related behaviors [36]. Certain types of pro-

longed stress, such as learned helplessness and

chronic mild unpredicted stress, are accepted as real-

istic depression models [36]. These models indicate

that it is not the stress per se but rather an inability to

cope with stress that leads to depression [11]. Thus

far, there are limited studies with data indicating that

there is a reduction in neuronal size, spine density, or

synapse density in realistic models of depression

(chronic mild stress, learned helplessness) [2, 33].

In the last decade, an impressive body of clinical

data has been collected using imaging techniques to

examine the morphological and metabolic brain

changes that are characteristic of depression [3, 10,

24]. Meta analyses (essential for reviewing findings

from different studies and comparing results in a stan-

dardized fashion) investigating the changes in voxel-

based morphometry have lead to the conclusion that,

in the course of depression, there are significant de-

creases in morphological volume within the cortico-

limbic circuit, including the amygdala (AMY), the

fronto-medial cortex, the paracingulate cortex, and,

depending on the analysis, the HIP [3, 10, 24]. Al-

though it is not clear whether the observed changes in

human brain volume are causative to depression, they

raise an interesting question regarding the cause and

effect between plasticity and depression. Shrinkage of

the brain structure, as well as the size of individual

neurons, is also observed in chronically stressed ani-

mals [31, 40]. In the present article, we focus our at-

tention on the superfamily of adhesion molecules,

which are proteins located on the cell surface that are

involved in binding with other cells or with the extra-

cellular matrix in a process called cell adhesion. Spe-

cifically, we consider the neural cell adhesion mole-

cule (NCAM) and its polysialylated form (PSA-

NCAM) as a cause of depression and potential target

for ADDs.

Essentially, cell adhesion molecules help cells stick

to each other and their surroundings. NCAM is

a member of the immunoglobulin (Ig) superfamily of

adhesion molecules, which are encoded by a single

gene. The process of alternative splicing can yield

two transmembrane NCAM isoforms – one 180- or

140-kDa isoform – or one 120-kD glucophosphatidyl

inositol-linked isoform. The extracellular domain of

NCAM is composed of five Ig-like domains followed

by two fibronectin type III (FN3) domains. NCAM

exhibits two modes of binding: homophilic and het-

erophilic. Homophilic binding consists of linkages to

a series of counter-receptors, including tyrosine ki-

nase receptors, such as the fibroblast growth factor re-

ceptor (FGFR), the brain-derived neurotrophic factor

receptor, and the tropomyosin kinase receptor B. Het-

erophilic binding, i.e., linkages to other adhesion

molecules and various extracellular NCAMs, is also

critical for maintenance of proper neuronal connec-

tions. To bind 2,8-polysialic acid (PSA), NCAM at-

taches to the negatively charged long chains of PSA,

conferring anti-adhesive properties on the molecule.

A high degree of NCAM polysialylation on neuronal

processes promotes a variety of developmental

events, such as axonal growth and fasciculation, cell

migration, initiation of synaptic reorganization, and

synaptogenesis. The expression of PSA-NCAM is

particularly high in the developing brain, as well as in

adults in the brain regions that undergo persistent and

sustained synaptic plasticity, such as the hypotha-

lamo-neurohypophysial system, the olfactory bulb,

the medial prefrontal, piriform and entorhinal corti-

ces, the AMY, and the HIP. Thus, alterations in the ex-

pression of PSA-NCAM may signify that changes in

plasticity are occurring in the adult brain (for exam-

ples from our laboratory, see [5, 25–27]). Elevated ex-

pression of PSA-NCAM may reflect changes in plas-

ticity, whereas decreased expression implies a rigidifi-

cation of neuronal morphology and an impedance of

dynamic changes in synaptic structure (for a extensive

review on NCAM/PSA-NCAM, see [12, 14]).

Clinical data

Clinical evidence regarding the involvement of

NCAM proteins in depression and bipolar disorders is
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sparse thus far. The soluble form of NCAM proteins

was detected in cerebrospinal fluid for the first time in

1988 by Jorgensen [21] and further replicated by Pol-

torak et al. in 1996 [38]. Both reports indicated an in-

creased concentration of the soluble form of NCAM

in psychiatric patients suffering from bipolar mood

disorder and major depression. Importantly, Poltorak

found no effect of medication on NCAM concentra-

tion (primarily the 120-kDa isoform) [38]. This ap-

parent effect raises the question of disease specificity.

Unfortunately, a similar effect has been observed in

patients suffering from schizophrenia [45], suggesting

a common effect of schizophrenia and depression on

brain plasticity, rather than a disease-specific pathol-

ogy marked by apparently abnormal NCAM turnover

in the CNS of patients with mood disorders. However,

depressed patients exhibited decreased PSA-NCAM

expression in the basolateral and basomedial AMY

[44], while bipolar patients showed the opposite effect

[44], as measured by stereological procedures. These

effects have now been reproduced by western blot

[28]. Interestingly, studies performed on brains do-

nated by the Stanley Neuropathology Consortium,

which includes controls, schizophrenia, bipolar and

major depression patients, no changes in PSA-NCAM

expression were observed in PC tissue of bipolar and

depressed patients [15].

NCAM gene knockout as a model

of depression

The transgenic animal model knocking out the gene

encoding the NCAM proteins is a useful tool to verify

its role as a potential cause of depression. Mice lack-

ing all three major isoforms of NCAM (NCAM–/–)

exhibit citalopram- and amitriptyline-sensitive anhe-

donia measured by the sucrose preference test (SPT)

[1]. In the tail suspension test (TST), an assessment

designed test invented to screen for the ADDs activ-

ity, NCAM–/– animals exhibit an increased time of

immobility in comparison to their respective controls.

The above effect has been blocked/attenuated by the

classic ADDs amitriptyline and citalopram [22].

These findings indicate that a lack of NCAM proteins

is sufficient to evoke “depressive-like” behavior, but

is not sufficient to influence the therapeutic effect of

ADDs [22]. The effect of NCAM knockout in the

TST and SPT has also been reversed by a 15-amino

acid-long peptide, called FGL. The FGL peptide mim-

ics the interaction of NCAM with fibroblast growth

factor receptors (FGFR), suggesting a novel therapeu-

tic target for drugs aimed at treatment of depression

[22]. Although the cognitive impairments observed in

the NCAM–/– model may be regarded as models of

indecisiveness which accomplishes depression, on

one hand, on the other hand, they could interfere with

animals’ performance on test assessments evaluating

their depressive state. This confound has been re-

solved using NCAM +/– heterozygous mice [23].

Again, such NCAM +/– animals display depres-

sive-like symptoms in the TST, the SPT, and the

novelty-suppressed feeding test; however, NCAM +/–

mice are devoid of cognitive impairments [23]. It is

worth noting here that NCAM–/– animals has exhibit

an increased level of fear and anxiety [22], which is

observed in the course of depression, and their re-

duced ability to cope with stress what may result

again in their depressive vulnerability [1].

Impact of ADDs on expression

of NCAM/PSA-NCAM protein

Thus far, we have found five separate articles demon-

strating the impact of ADDs on expression of

NCAM/PSA-NCAM protein (see Tab. 1 and its refer-

ences). These studies are based on chronic ADDs ad-

ministration [fluoxetine (FLU) (four reports) and imi-

pramine (one study) – see Tab. 1 and references

there)]. In all the studies mentioned, elevated expres-

sion has been noted in both young-adult and adult ani-

mals. Such consistent effects have been observed in

the PC or its subregions, while decreased expression

has been noted in the AMY in adult but not adolescent

rats (see Tab. 1 and its references). Animal age is im-

portant because constitutive expression of NCAM/

PSA-NCAM is decreased during the life span [12,

14]. An additional 3 separate experiments utilized

a stress model, and both the ADD FLU and the novel

ADD, agomelatine, were found to influence stress-

induced elevation of NCAM/PSA-NCAM. Two studies

indicated that stress elevates the expression of NCAM

protein in the PC and the HIP, which is blocked by

chronic administration of FLU [8, 9]. Agomelatine

[39] normalized the stress- and learning-induced de-
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creases in expression of PSA- NCAM observed in the

ventral HIP.

Apart from the phenomenological observation that

ADDs (predominately FLU) alters the expression of

PSA-NCAM proteins, relatively little is known about

the mechanism of above effects. Is not clear whether

ADDs, or FLU specifically, directly influences PSA-

NCAM or NCAM expression or leads to changes in

expression via alterations in neurotransmission – for

example, serotonergic transmission. To our knowl-

edge, only one study addresses this issue. It has been

found that acute administration of ondansetron, a spe-

cific antagonist of 5-HT3 receptors, in an acute dose

alleviated the increase in PSA-NCAM induced by

chronic FLU administration [43]. This result appears

to suggest that FLU alters PSA-NCAM via changes in

serotonergic transmission and in a manner that in-

volved 5-HT3 receptors [43].
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Tab. 1. Impact of various antidepressant drugs on expression of NCAM or PSA-NCAM proteins in the rat brain

Antidepressant
drug (dosage

and treatment)

Species Method of analysis Paradigm Brain region Effect Ref.

Fluoxetine,
21 days,

5 mg/kg ip

Young-adult
male

Wistar rats

Western blot, NCAM Chronic social
isolation

PC Reduction of the PSA-NCAM
level elevated by stress.

In naive, no effect

[8]

Fluoxetine,
14 days,

10 mg/kg ip

Young-adult
male

Wistar rats

Immuno-cytochemistry,
PSA-NCAM

Naive PC, AMY,
HIP

Increase in all analysed regions [17]

Fluoxetine,
21 days,

5 mg/kg ip

Young-adult
male

Wistar rats

Western blot Chronic social
isolation

HIP Reduction of the PSA-NCAM
level elevated by stress.

Alone, inactive

[9]

Fluoxetine,
21 days,

12 mg/kg po

Young and
old male

Wistar rats

Immuno-cytochemistry,
NCAM/PSA-NCAM

Naive AMY, DR,
PC

AMY-increased in adolescent
but decreased in adult.
No effects in the other

brain regions

[19]

Agomelatine,
22 days,

10 mg/kg ip

Adult male
Sprague-

Dawley rats

Immuno-cytochemistry Spatial memory
training

with or without
predator stress

vHIP Treatment blocked the water
maze-induced decrease in

PSA-NCAM in both stressed
and non-stressed animals

[7]

Fluoxetine,
14 days,

10 mg/kg, ip

Adult male
Sprague-

Dawley rats

Immuno-cytochemistry Naive PC, AMY Increased PSA-NCAM
expression in PC

and decreased in AMY

[44]

Imipramine,
acute 30 mg/kg ip

and chronic,
21 days,

15 mg/kg ip

Adult male
Wistar rats

Immuno-cytochemistry,
PSA-NCAM

Naive PEC, PIC,
HIP

Increase only after
chronic treatment

[41]

Fluoxetine,
14 days,

10 mg/kg ip

Young-adult
male

Wistar rats

Immuno-cytochemistry,
PSA-NCAM

Naive INC, PRC,
CC

Increase [43]

The table was developed using data compiled from aMedline search based on the following key words: antidepressant drugs and PSA-NCAM
and antidepressant drugs and NCAM. Two articles were omitted because they address the question of proliferation but not neuroplastic
changes. Abbreviations: AMY � amygdala, CC � cingulate cortex, DR � dorsal raphe nucleus, HIP � hippocampus, INC � infralimbic cortex PC
� prefrontal cortex, PEC � perilimbic cortex, PIC � piriform cortex, PRC � prelimbic cortex, vHIP � ventral hippocampus, ip � intraperitoneal route
of drug administration po � oral administration (per os)



Finally, it bears mentioning two published articles

that utilized the ability of ADDs to induce neuroplas-

tic changes in a manner that is clearly distinct from

their ADDs properties [13, 20]. The first study ana-

lyzed the impact of on alteration of NCAM expres-

sion in the HIP after kainic acid-induced seizure [20],

and the second study analyzed the effect of prolonged

administration of venlafaxine on alteration of NCAM

expression in ischemic stroke [13]. Administration of

kainic acid induces seizures and neuronal death

largely in CA3 region, followed by a cascade of neu-

roplastic changes throughout the HIP, including tem-

porary activation of neurogenesis, dispersion of gran-

ule cells, and reorganization of mossy fibres [20]. All

of the above changes have been restored to control

levels after administration of citalopram seven days

before and 21 days after administration of kainic acid.

It is also not clear whether citalopram directly influ-

ences neuroplastic changes or neuroplastic changes

are attenuated by a decrease in seizure severity. The

mechanism through which ADDs could alter seizure-

evoked neuroplasticity is largely unknown. It has

been speculated that the effectiveness of ADDs ad-

ministered in a course typical for treatment of depres-

sion (i.e., chronic administration) is not only due to

changes in neurotransmitter concentrations and/or re-

ceptor sensitivity but is also due to an improvement in

brain plasticity and tissue remodelling [20]. There is

one study analyzing the impact of chronic venlafaxine

on expression of NCAM proteins in the mouse HIP

after cerebral ischemia [13]. The rationale of these ex-

periments is based on the assumption that ischemic

brain injury often results in severe neurological dam-

age, which may be the basis for the accompanying

cognitive impairment and depressive states [13]. It

has been observed that venlafaxine in a dose-

dependent manner abrogates the ischemia-induced

elevation of NCAM proteins in the HIP [13]. It will be

of interest to further analyze the above pathway to in-

vestigate first, whether ischemic insults in mice lead

to depressive symptoms and, secondly, whether acute

or prolonged administration of venlafaxine after

ischemic insults is also effective against the ische-

mia-induced elevation of PSA-NCAM. The results of

both studies may indicate that ADDs may be used ef-

fectively in brain disorders caused by abnormalities in

neuroplasticity [13, 20].

In summary, the data indicating a role of NCAM or

PSA-NCAM proteins in realistic models of depres-

sion are yet to be discovered. The first step in that di-

rection was a study by Bessa at al. [2] demonstrating

that chronic mild stress leading to anhedonia (de-

creased sucrose preference) provoked an increase in

the expression of NCAM mRNA in the rat nucleus ac-

cumbens. This effect was reversed by chronic admini-

stration of FLU and imipramine [2].

NCAM as potential target for new

antidepressants

It is difficult to imagine that molecules of extracellu-

lar matrix could be targets for novel ADDs. However,

drugs that may alter brain structure are of potential in-

terest not only in the case of depression but also in

several other disorders associated with either cogni-

tion or learning and memory. In the case of NCAM

proteins, it may be proposed that inhibitors or activa-

tors of the polysialyltransferases ST8SiaII (STX) and

ST8SiaIV (PST), selectively involved in polysialyla-

tion of the NCAM protein may constitute a potential

drug target. As mentioned above, long negatively

charged chains of PSA attached to NCAM confer

anti-adhesive properties to the molecule and promote

reorganization of the mature brain [12, 14]. STX

regulates NCAM polysialylation during embryonic,

perinatal, and early postnatal development, whereas

PST is predominantly active in the postnatal brain [4,

29]. The data indicating that depression results from

developmental origin, or traumatic life events STX

and PST are the targets of choice. It is not known

whether animals with the gene encoding STX or PST

knocked out are “depressive” [4, 29]. Thus far, it has

been observed that they display specific impairments

in spatial memory but not conditioned fear memory in

PST knockouts [29]. It has also been found that both

STX and PST knockouts exhibit impaired sociability,

while only STX exhibits an increased level of aggres-

sion and enhanced stress reactivity, as measured by

corticosterone levels in response to stress [4]. Alter-

natively, alteration in the level of the circulating solu-

ble form of NCAM may be another target. Soluble

NCAM is an antagonist of membrane-bound NCAM.

This antagonism can be achieved by either a specific

antibody or a compound that influences or detaches

the constitutive membrane-bound NCAM. The family

of ADAM (a disintegrin and metalloproteinase) pro-

teins is required for NCAM shedding and may consti-
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tute a potential target for novel drugs [18]. Finally,

linkage of NCAM to FGFRs is of potential interest.

The ability of the FGL peptide to penetrate the CNS

after peripheral administration supports further re-

search of NCAM proteins as targets of novel ADDs

[1, 42].

Conclusion

Although the concept that depression and the mecha-

nism of action of ADDs are associated with remodel-

ling of neuronal circuits that are essential for mood

and cognition is interesting, it should, however, be

suggested cautiously [36]. First, only a limited

number of clinically effective ADDs have been tested

(Tab. 1). Secondly, limited, if any, studies analyzed

the time course of changes in expression of

PSA-NCAM/NCAM after ADD treatment, and there-

fore, it is not clear whether the described effects are

transient or persistent. In the absence of clear clinical

data regarding the involvement of NCAMs in the eti-

ology of depression, it is conceivable that these pro-

teins may be involved in the mechanism of action of

ADDs but not in the origination of depression. Thus

far, the most probable explanation for the effect of

ADDs is that they alter serotonergic transmission,

precipitating brain remodelling [43]. Subsequently, it

will be necessary to investigate symptoms of depres-

sion in animal models overexpressing the soluble

form of NCAM. Such animals are available and dis-

play a schizophrenic-like phenotype [37]. However,

the common feature of schizophrenia and depression

on the level of mood does not rule out depressive

symptoms. Finally, it will be important to confirm the

effects of both chronic and acute administration of

ADDs. The latter suggestion is important in the con-

text of experiments performed on C6 glioma cells that

indicated that even short exposure of these cells to

FLU, such as 6 hours, increased expression of the

NCAM protein [6]. NCAM/PSA-NCAM positive

cells are present predominately, if not exclusively, in

the population of inhibitory interneurons located in

the PC, AMY, and HIP. PSA-NCAM-expressing cells

constitute around 10% of the GAD67-expressing in-

terneurons, i.e., GABAergic inhibitory interneurons

[16, 34]. Many of the PSA-NCAM-expressing somata

are positive for calbindin and somatostatin, and a very

small population of these cells express parvalbumin,

calretinin, and neuropeptide Y or vasointestinal pep-

tide [16, 34]. Additionally, PSA-NCAM-positive cells

in the neurophil co-expressed markers of GABAergic

terminals and neurotransmission, such as the vesicular

GABA transporter (VGAT) or GAD67, but virtually

none of them expressed the vesicular glutamate trans-

porter 1 (VGLUT1), a marker of glutamatergic neu-

rons [16, 34]. The above characteristics are given here

because they provide important information regarding

the potential mechanism of action of ADDs. It is con-

ceivable that via alteration in structural plasticity gov-

erned by PSA-NCAM, ADDs may shift the balance

between inhibitory input and excitatory output in neu-

ronal circuits associated with depression.
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