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Abstract:

A compelling body of evidence suggests that nitric oxide (NO), a unique gaseous neurotransmitter and neuromodulator plays a key

role in the regulation of motor function. Recently, the interest of researchers concentrates on the NO – soluble guanylyl cyclase

(sGC) – cyclic GMP (cGMP) signaling pathway in the striatum as a new target for the treatment of Parkinson’s disease (PD). The aim

of the study is to review the available literature referring to the role of NO in the integration of basal ganglia functions. First, attention

has been focused on behavioral effects of NO donors and neuronal nitric oxide synthase (nNOS) inhibitors in the modulation of mo-

tor behavior. Then, disturbances in the nitrergic neurotransmission in PD and its 6-OHDA animal model have been presented.

Moreover, the most current data demonstrating the contribution of both dopamine and glutamate to the regulation of NO biosynthe-

sis in the striatum have been analyzed. Finally, the role of NO in the tonic and phasic dopamine release as well as in the regulation of

striatal output pathways also has been discussed.
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Abbreviations: AMPA – a-amino-3-hydroxyl-5-methyl-4-

-isoxazole propionate, BH4 – tetrahydrobiopterin, cAMP – cy-
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monophosphate, CNQX – 6-cyano-7-nitroquinoxaline-2,3-

dione, DA – dopamine, eNOS – endothelial nitric oxide syn-

thase, GPe – external segment of the globus pallidus, GPi – in-

ternal segment of globus pallidus, 5-HT – serotonin, iNOS –

inducible nitric oxide synthase, IRF-1 – interferon regulatory

factor-1, L-Arg – L-arginine, L-NAME – NG-nitro-L-arginine

methyl ester, L-NMMA – NG-monomethyl-L-arginine, L-NNA

– NG-nitro-L-arginine, MSNs – medium-sized spiny neurons,

mtNOS – mitochondrial nitric oxide synthase, NADPH – the

reduced nicotinamide adenine dinucleotide phosphate,

NADPH-d – nicotinamide adenine dinucleotide phosphate-

diaphorase, NF-kb – nuclear factor kb, 7-NI – 7-nitroindazole,

NMDA – N-methyl-D-aspartic acid, nNOS – neuronal nitric

oxide synthase, NO – nitric oxide, 6-OHDA – 6-hydroxy-

dopamine, PCP – phencyclidine, PD – Parkinson’s disease,

PDEs – cyclic nucleotide phosphodiesterases, PKG – cGMP-

dependent protein kinase, sGC – soluble guanylyl cyclase,

SNP – sodium nitroprusside, SNr – substantia nigra pars reticu-

lata

Introduction

Although modern molecular biology revealed enor-

mous profuseness of different proteins and genes

regulating body functions, investigations of the last

20 years have attributed a fundamental role in neu-

ronal communications, modulation of blood vessel re-

laxation and immune response to a very simple mole-
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cule that is nitric oxide (NO). In the central nervous

system, NO plays an important role in many different

processes, such as neurodevelopment [51], release

and uptake of neurotransmitters [88], synaptic plastic-

ity [32, 54, 71, 80, 120, 163] regulation of gene ex-

pression [78] and what is a subject of this review, in

the control of motor function.

Nigrostriatal dopamine plays a crucial role in the

regulation of motor behavior [61] but also other neu-

rotransmitter systems (noradrenergic, serotonergic,

glutamatergic, cholinergic, GABAergic) contribute to

the modulation of this process. NO as an easily cell

membrane-penetrating molecule is involved in com-

munication between these systems and acts as an ideal

mediator of nonsynaptic interactions [89, 142, 151,

152]. In vitro studies on striatal slices and in vivo mi-

crodialysis experiments have revealed that NO evokes

the release of dopamine (DA) and other neurotrans-

mitters [66, 74, 84, 98, 99, 138, 144, 145, 155–157,

164] in the striatum as well as affects the function of

DA, serotonin (5-HT) and noradrenaline transporters

[88, 90, 118]. Moreover, it has been demonstrated that

NO can act as a neuroprotective agent [22, 24, 28, 84,

87, 124], although at a high concentration it can be

a mediator of excitotoxic neuronal damage [33, 121].

The aim of the study is to review the available lit-

erature referring to the role of NO in the integration of

dopaminergic and glutamatergic neurotransmission in

the striatum that is the main structure of basal ganglia.

First, attention has been focused on behavioral effects

of NO donors and neuronal nitric oxide synthase

(nNOS) inhibitors in the modulation of motor behav-

ior. Then, disturbances in the nitrergic neurotransmis-

sion in Parkinson’s disease (PD) and its 6-OHDA ani-

mal model have been presented. Moreover, the most

current data demonstrating contribution of both dopa-

mine and glutamate to the regulation of NO biosyn-

thesis in the striatum have been analyzed. Finally, the

interaction between dopaminergic and glutaminergic

systems under physiological conditions and after de-

generation of the nigrostriatal dopaminergic neurons

as in PD will be discussed in support of the 6-OHDA

animal model of the disease.

NO synthesis in brain

NO is a soluble, short-lived, membrane-diffusible gase-

ous neurotransmitter synthesized enzymatically by the

nitric oxide synthase (NOS) through two successive

reactions which require oxygen, the reduced nicotina-

mide adenine dinucleotide phosphate (NADPH), and

the substrate L-arginine (L-Arg) for generation of

equimolar concentrations of NO and citrulline [65,

105, 114]. In contrast to conventional neurotransmit-

ters, NO cannot be stored in synaptic vesicles, hence,

factors regulating the synthesis are critical for its

function. In the mammalian organisms, NO is synthe-

sized by four enzymes belonging to the NOS family

[65]. Three of them are constitutive NOS isoforms

[65], i.e., neuronal nitric oxide synthase (referred to as

nNOS or NOS-I) originally found in neurons, endo-

thelial nitric oxide synthase (referred to as eNOS or

NOS-III) being mainly expressed in vascular endothe-

lium and mitochondrial nitric oxide synthase

(mtNOS) present in the inner mitochondrial mem-

brane [45]. The fourth member of the NOS family,

i.e., the inducible nitric oxide synthase (known as

iNOS or NOS-II) is expressed in astrocytes and mi-

croglia cells in response to immunological or inflam-

matory stimulation [11, 56, 65]. Enzymatic activities

of nNOS, eNOS and mtNOS are Ca2+-calmodulin-

-dependent while iNOS is independent of Ca2+ due to

a tight constitutive interaction with calmodulin [23].

Enzymatic activity of iNOS is regulated transcription-

ally by inflammatory stimuli, such as interferon regu-

latory factor-1 (IRF-1) [79] and nuclear factor kb

(NF-kb) [161].

Of the three constitutive NOS isoforms, nNOS is

the predominant source of NO in neurons although

this enzyme has been also found in rat astrocytes [4].

nNOS and eNOS generate small, short-lasting (few

minutes) increases in NO contents while iNOS pro-

duces high amount of NO lasting hours or days [73].

Similarly like nNOS and eNOS, also mtNOS gener-

ates small quantities of NO. The function of NO in the

mitochondria could be related to the regulation of O2
consumption by inhibiting the cytochrome c oxidase

[14, 25, 112]. The modulation of O2 consumption by

mitochondrial NO is transient and reversible.

All the NOSs share between 50–60% sequence ho-

mology [96]. The human nNOS consists of 1434

amino acids with a predicted molecular weight of

160.8 kDa [9]. Monomer of nNOS is an inactive en-

zyme while dimer is its active form and the dimeriza-

tion requires tetrahydrobiopterin (BH4), heme and

L-Arg binding [125]. nNOS monomer exhibits a bido-

main structure containing an oxygenase N-terminal

domain and a reductase C-terminal domain which can
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be separated by a calmodulin binding motif [162].

The oxygenase domain which binds the substrate

L-Arg contains a BH4 binding site and cytochrome

P-450-type heme active site. This domain possesses

also a binding site for zinc which facilitates nNOS di-

merization. The reductase domain which binds the

substrate NADPH contains a binding site for flavin

adenine dinucleotide (FAD) and flavin mononucleo-

tide (FMN) [111, 130]. Electrons donated by NADPH

can be transferred from the reductase domain to the

oxygenase domain via FAD and FMN. The latter pro-

cess of electron flow can be facilitated by Ca2+/
calmodulin binding [127].

NO formed in the two-step reaction stimulates its

target receptor, i.e., soluble guanylyl cyclase (sGC) to

produce the second messenger cGMP that then affects

other effectors localized pre- and post-synaptically in

the brain [8, 52, 53]. NOS has been found in the brain

in discrete neuronal populations, in particular in the

areas, such as the cerebellum, hippocampus, striatum,

cortex, hypothalamus, midbrain, olfactory bulb and

medulla of the rat [12, 13, 31, 53]. nNOS-expressing

interneurons and their processes are readily labeled

using nicotinamide adenine dinucleotide phosphate-

diaphorase (NADPH-d) histochemical staining tech-

niques [12, 68, 82, 86, 149, 150]. NADPH-d activity

arises from the catalytic domain of the nNOS enzyme

[31, 62, 68] which converts the substrate nitroblue te-

trazolium to a formazan salt in a manner that accu-

rately reflects nNOS enzymatic activity [107, 134].

However, in the aldehyde-fixed rat brain, NADPH-d

is suggested to be related not only to nNOS but also to

other isoforms of this enzyme as well as to several

non-related types of NADPH-oxidoreductases [128].

Hence, especially for the identification and subcellu-

lar localization of the different nitric oxide synthase

isoforms, and to distinguish them from other types of

NADPH-oxidoreductases, independent techniques

other than NADPH-d histochemical staining, such

as immunocytochemistry and in situ hybridization,

should be applied [128].

The effects of NO donors and nNOS

inhibitors on motor function

A growing body of evidence from animals studies in-

dicates that NO is a key modulator of neuronal activ-

ity in the dorsal striatum and a critical factor for the

regulation of motor function and synaptic plasticity

[37, 158]. Behavioral studies carried out on rodents

demonstrated that non-selective and selective nNOS

inhibitors reduced spontaneous locomotor activity

[43, 137, 143] and hyperlocomotion induced by co-

caine [122, 123], morphine [19], substance P [100] as

well as by amphetamine or metamphetamine [1, 113,

122]. Also locomotor activity stimulated by selective

dopamine D1 and D2 receptor agonists [122, 141] and

the N-methyl-D-aspartic acid (NMDA) receptor an-

tagonist MK-801 [39] was decreased by these inhibi-

tors. Although MK-801-stimulated locomotor activity

was reduced by nNOS inhibitors, contradictory results

were obtained with another NMDA receptor antago-

nist phencyclidine (PCP). In particular, it has been

shown that stimulatory effect of the latter NMDA re-

ceptor antagonist on locomotor activity was blocked

by both the NO donor sodium nitroprusside (SNP)

[15] or by diverse nNOS inhibitors [76, 77, 91].

Moreover, another series of studies demonstrated that

nNOS inhibitors potentiated PCP-induced hyperloco-

motion [16, 109, 110]. Hence, the exact role of NO in

modulating locomotor activity in conditions of NMDA

receptor blockade is unclear and these discrepancies

still need to be elucidated.

Apart from reduction of the spontaneous and sti-

mulated locomotor activities, nNOS inhibitors in-

duced in rodents and pigeons a distinct catalepsy [20,

34, 75, 92, 103]. Catalepsy induced by a non-selective

nNOS inhibitor NG-nitro-L-arginine (L-NNA) was at-

tenuated by the NO precursor L-Arg [34, 103] and the

NO donor molsidomine [92]. Krz¹œcik and Kostowski

[92] have demonstrated that catalepsy induced by

haloperidol administration (0.4 mg/kg) was dose-de-

pendently reduced by molsidomine (10–100 mg/kg)

and by L-Arg at a dose of 100 mg/kg. Low non-

cataleptic doses of the nNOS inhibitor L-NNA

(0.1 mg/kg) and haloperidol (0.1 mg/kg) administered

jointly induced a long-lasting catalepsy. Additive ef-

fects of dopamine D2 receptor antagonists (haloperi-

dol, triapride) and nNOS inhibitors on catalepsy was

also described by others [20, 103]. Cataleptic activity

of nNOS inhibitors was also intensified by serotonin

5-HT1A (WAY 100135), 5-HT2A (ketanserin) and

5-HT2C (ritanserin) receptor antagonists [37].

In contrast to the above-mentioned dopamine and

serotonin receptor antagonists, antimuscarinic com-

pounds, like atropine and biperiden blocked catalepsy

induced by nNOS inhibitors [37]. After subchronic

(4-days) administration of the non-selective nNOS in-
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hibitor L-NNA cataleptogenic activity of this com-

pound was attenuated due to the development of toler-

ance [36, 38, 103]. In the majority of the reported

studies, nNOS inhibitors were administered systemi-

cally. In order to check whether the striatum is in-

volved in catalepsy induced by nNOS inhibitors these

compounds were administered directly into this struc-

ture [35, 37]. The latter studies confirmed that both

non-selective (L-NNA; NG-nitro-L-arginine methyl es-

ter, L-NAME; NG-monomethyl-L-arginine, L-NMMA)

and selective (7-nitroindazole , 7-NI) nNOS inhibitors

injected into the striatum induced a distinct catalepsy

in rodents. Catalepsy induced in rats by intrastriatal

administration of the non-selective nNOS inhibitor

L-NAME was antagonized by L-Arg injected locally

into this structure [35]. All the above-reported studies

distinctly indicate that NO can modulate motor

behavior of animals by affecting dopaminergic, se-

rotoninergic or cholinergic transmission in the stria-

tum [37].

NO in Parkinson’s disease and its animal

model

Progressive loss of DA neurons in the substantia nigra

pars compacta (SNc) which leads to a severe deple-

tion of DA in the caudate-putamen (in the rat corre-

sponding to the corpus striatum) is the most character-

istic pathological feature of PD that gives rise to the

motor deficit. Apart from this well-documented

pathological alteration in the nigrostriatal dopaminer-

gic system, it has been demonstrated that the number

of NO synthesizing neurons [10] and the expression

of nNOS mRNA were markedly decreased in the pu-

tamen of parkinsonian brain [47]. In contrast to the

putamen, in the medial medullary lamina of the

globus pallidus and in the subthalamic nucleus (STN),

nNOS mRNA expression was significantly increased

[47]. However, in the cerebrospinal fluid of PD pa-

tients, the level of nitrate, which is considered to be a

measure of NO biosynthesis in the brain, was found to

be significantly reduced when compared to controls

[95]. The latter effect may be related to the biosynthe-

sis of NO by nNOS that is strictly dependent on the

cofactor (6R)-tetrahydrobiopterin (BH4), the concen-

tration of which is greatly reduced in the caudate nu-

cleus of parkinsonian patients [95].

Consistently with these clinical data Sancesario et

al. [134] have reported that the level of nNOS protein

was decreased by 42% and the number of nNOS-

immunopositive intrastriatal fibres but not nNOS-

immunopositive cell bodies was markedly reduced in

the DA-deafferented rat striatum. Moreover, using an

enzymatic method based on conversion of 3H-L-argi-

nine to 3H-citruline for assessment of nNOS activity,

it has been demonstrated that lesion of the nigrostri-

atal dopaminergic innervation resulted in a 50% de-

crease in the activity of this enzyme in the ipsilateral

striatum [40]. These few clinical and experimental

studies suggest that the loss of striatal DA due to de-

generation of the nigrostriatal dopaminergic neurons

can be expected to induce changes in the NO-

mediated neurotransmission in the basal ganglia.

These aspects will be discussed in the next chapters of

this review.

The role of NO in signal transduction

Nitrergic transmission in the brain requires a fast and

controlled supply of NO to the target cells. Due to

unique properties of NO a precise control of transmis-

sion mediated by this specific neurotransmitter is

mainly regulated by the level of NO biosynthesis.

L-Arg, a precursor of NO, enters the brain paren-

chyma from the blood through the endothelial cells or

from the cerebrospinal fluid through the ependymal

cells [57]. Astrocytic processes are in a direct contact

with the endothelium and ependymum, hence, astro-

cytes are the main source of L-Arg in the brain [3,

119]. However, NO synthesizing enzyme is localized

predominantly in neurons and, therefore, is defined as

nNOS [30, 55]. Thus, to complete neural pool of L-

Arg, it is absolutely necessary to transport this amino

acid from glial cells to neurons. The experiments per-

formed on brain slices as well as in cultured astro-

cytes and neurons have demonstrated that nNOS ac-

tivity is dependent on accessibility of L-Arg which is

delivered from glial cells [63, 64]. The latter studies

showed that agonists of ionotropic glutaminergic re-

ceptors (glutamate, NMDA) administered to brain

slices and to astrocyte culture induced the release of

the labeled L-Arg. In contrast to astrocyte culture,

such effect was not observed in the cultured neurons.

A subsequent series of studies revealed that ionotropic
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non-NMDA receptors, especially a-amino-3-hydroxyl-

5-methyl-4-isoxazole propionate (AMPA) receptors,

contributed to the release of L-Arg by glial cells.

Blockade of these receptors by the specific antago-

nist, compound 6-cyano-7-nitroquinoxaline-2,3-dione

(CNQX), led to a very distinct decrease in basal level

of the released L-Arg [64, 139]. Apart from glutamate

also peroxynitrite anion (ONOO�) stimulates the re-

lease of L-Arg from cultured rat astrocytes [147] by

direct activation of L-Arg transport system y(+)

which is localized in membranes of these cells [146].

So availability of L-Arg is a limiting factor for NO

biosynthesis, hence, peroxynitrite anion formed in

neurons diffuses to astrocytes transmitting the signal

to release L-Arg. The described process may be con-

sidered as a form of neuroprotection since in condi-

tions of L-Arg deficit, the activated nNOS produces,

instead of NO, toxic superoxide radical that may react

even with a minimal amount of NO forming per-

oxynitrite anion [30, 72]. L-Arg delivered by astro-

cytes to neurons normalizes production of NO and in

this way prevents generation of superoxide radical.

Contribution of NO to the regulation

of the striatum function

In the striatum, NO biosynthesis takes place in a sub-

population of striatal GABAergic medium-sized

aspiny interneurons, which colocalize with neuropep-

tide Y and somatostatin [48, 86, 93, 94, 129, 148,

149]. These neurons are mainly concentrated in the

matrix while striosomes are practically devoid of

them [83, 136, 148]. Studies using stereological tech-

niques estimate that NOS/somatostatin-containing in-

terneurons constitute less than 5% (~21,000 cells/

hemisphere) of the total neuronal population of the

striatum [156]. However, the axons of individual NOS

cells give rise to a dense net of collaterals that extend

much further than other striatal interneurons enabling

the NO produced by these cells to exert a considerable

functional impact on both blood flow and neurotrans-

mission across large striatal subregions [46, 116,

142]. Striatal nNOS expressing interneurons are

robustly innervated by dopaminergic input from the

SN and by glutamatergic projections from the cortex

[50, 67, 85, 104, 131, 153]. Moreover, these nNOS

positive interneurons make synaptic contacts with the

medium-sized spiny neurons (MSNs) that constitute

95% of all striatal neurons and provide the only out-

put from the striatum [18, 106, 135]. Striatal MSNs,

similarly like nNOS-positive interneurons, are inner-

vated by dopaminergic input from the SN and by glu-

tamatergic routes from the cortex and thalamus [26].

Hence, nitrergic, dopaminergic and glutamatergic

transmission converge in the striatum at the nNOS-

positive interneurons [49, 50, 67, 104] and medium

spiny projection neurons [17, 106, 135]. Therefore,

striatal nNOS expressing interneurons play a critical

role in the integration of dopaminergic and glutama-

tergic interactions as well as in the modulation of cor-

ticostriatal synaptic plasticity [17, 18, 81, 83, 155,

158–160].

Role of glutamate and DA

in the regulation of NO synthesis

in the striatum

It is widely accepted that nNOS enzyme expressed

constitutively in neuronal cells is activated following

transient elevations in intracellular Ca2+ levels medi-

ated via stimulation of NMDA receptors by glutamate

[52]. Hence, it has been thought that robust corticos-

triatal glutamatergic transmission activates striatal

nNOS and NO signaling largely via the stimulation of

NMDA receptors [29, 44, 74, 101, 102]. However,

striatal nNOS interneurons express not only NMDA,

AMPA and metabotropic glutamate receptors [60, 81,

108] but also dopamine D1/5 receptors [21, 97, 126].

Moreover, a considerable evidence indicates that be-

sides NMDA receptors, also DA D1 and D2 receptor

activation regulates the striatal nNOS activity [70,

115, 132, 133]. Recently, it has been demonstrated

that electrical and chemical stimulation of the SN as

well as systemic administration of the DA D1 agonist

SKF81297 robustly increase striatal NO efflux meas-

ured by the combined techniques of in vivo ampero-

metry and reverse microdialysis [132]. Both these ef-

fects were attenuated by systemic administration of

the nNOS inhibitor 7-NI and DA D1/D5 receptor an-

tagonist SCH23390 [132]. The latter effects provide a

strong evidence that phasic DA transmission activates

striatal nNOS via D1/D5 receptor-dependent mecha-

nism. Moreover, the facilitatory effect of the SN

stimulation on striatal NO efflux was attenuated by

systemic administration of the DA D2 receptor agonist
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quinpirole [133]. Quinpirole pretreatment also de-

creased the facilitatory effect of SKF81297 on striatal

NO efflux and nNOS activity measured indirectly as

NADPH-d histochemistry [70, 133]. The observation

that DA D2 receptor activation potently suppresses

transient efflux of NO elicited by SKF81297 admini-

stration indicates that the DA D2 receptor-mediated

effect does not function to simply decrease terminal

DA release (and DA D1 receptor activation) via stimu-

lation of autoreceptors, but rather acts at a site post-

synaptic to DA terminals in a manner which opposes

the facilitatory influence of DA D1 receptor activa-

tion. Conversely, administration of DA D2 receptor

antagonist etaclopride increases NO efflux measured

by means of microsensor and striatal NOS activity as-

sessed as NADPH-d histochemistry [107, 133].

The above-described studies indicate that DA

modulates nNOS activity in the striatum via both fa-

cilitatory (D1 receptor stimulation) and inhibitory (D2
receptor stimulation) signaling. Since striatal nNOS

interneurons express DA D1/D5 receptors, nNOS acti-

vation is likely to result from a direct influence of DA

D1 agonists on these neurons. In opposition, an effect

mediated by D2 receptors seems to be indirect because

co-localization of these receptors with markers of stri-

atal NOS interneurons has not been reported. How-

ever, striatal nNOS interneurons receive synaptic in-

put from glutamatergic, GABAergic, dopaminergic

and cholinergic neurons [49, 50, 67, 106, 131, 153]

and all these populations express DA D2 receptors [7,

154]. It has been demonstrated that DA D2 receptors

detected on excitatory glutamatergic and cholinergic

terminals in the striatum attenuate excitatory synaptic

transmission in medium spiny neurons [7, 154].

Hence, it is possible that the inhibitory effect of DA

D2 agonists on NO efflux reported in the abovemen-

tioned studies occurs via a DA D2 heterorecep-

tor-mediated suppression of excitatory glutamatergic

and/or cholinergic inputs involved in functional con-

trol of the striatal NOS-containing interneurons.

Considering NMDA-mediated regulation of striatal

NOS activity, recently Park and West [115] have dem-

onstrated that striatal D1/D5 receptor stimulation is

necessary for the activation of nNOS by glutamater-

gic corticostriatal afferents. On the other hand, Hoque

et al. [70] have shown that activation of NMDA re-

ceptors is necessary for modulation of striatal NOS

activity by both facilitatory (D1 receptor activation)

and inhibitory (D2 receptor activation) dopaminergic

signaling mechanisms. Both these studies revealed

that reciprocal DA-glutamate interactions play a criti-

cal role in stimulating striatal nNOS activity. Since in

PD, the function of dopaminergic system is dramati-

cally decreased, it seems clear that also NO produc-

tion can be disturbed.

The role of NO-soluble guanylyl

cyclase-cyclic GMP (NO-sGC-cGMP)

signaling in the regulation of output

pathways of the striatum

The GABAergic MSNs that provide the only output

from the striatum are the major target of dopaminergic

innervations. These neurons form two main efferent

pathways that differ in the expression of DA recep-

tors. MSNs that project to the substantia nigra pars re-

ticulata (SNr) and internal segment of globus pallidus

(GPi) (named the direct pathway) express DA D1 re-

ceptors whereas those projecting to the external seg-

ment of the globus pallidus (GPe) (named the indirect

pathway) express DA D2 receptors. Signal transmis-

sion through the “direct pathway” provides a power-

ful inhibitory control of SNr and GPi. By contrast,

signalling through the parallel “indirect pathway“

leads to increased activity of excitatory glutamatergic

neurons in the subthalamic nucleus (STN), which in-

duces a strong excitation of the SNr and GP. A thinly

regulated balance of output nuclei activity by the di-

rect and the indirect pathways is thought to be essen-

tial for normal function of the basal ganglia. Accord-

ingly, a reduced dopaminergic innervations to the

striatum, due to the loss of DA neurons in the SN dur-

ing PD leads to the alterations of MSNs activity and

to the onset of severe motor symptoms.

MSNs of the direct pathway primarily express DA

D1 receptors that are positively coupled to adenylyl

cyclase while that of indirect pathway expressing DA

D2 receptors are negatively coupled to adenylyl cy-

clase. The striatal MSNs have been shown to receive

synaptic inputs from NO producing interneurons [49,

67, 135]. These synaptic inputs, terminate on the

shafts of dendritic spines of MSNs known to express

the highest levels of sGC in the brain [5, 41]. Apart

from sGC, MSNs also express high levels of cGMP,

cGMP-dependent protein kinase (PKG) and cyclic

nucleotide phosphodiesterases (PDEs) [6, 27, 41, 58].

The major physiological action of NO consists in the
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activation of sGC to increase intracellular cGMP

level. NO acts via cGMP to regulate ion channels,

protein kinases (PKG) and PDEs. The NO/cGMP sig-

nal transduction pathway is involved in integrating

corticostriatal transmission and regulating synaptic

plasticity in striatal networks. Some recent studies

have demonstrated an important role for striatal NO-

sGC pathway in the generation of spontaneous and

drug-induced motor behavior [37].

In the striatum under physiological conditions, DA

released from the nigrostriatal dopaminergic termi-

nals interacts with DA D1 receptors and in this way

stimulates synthesis of adenosine 3’,5’-cyclic mono-

phosphate (cAMP). As revealed by more recent stud-

ies, the stimulation of these receptors, through an in-

crease in the striatal nNOS activity, also leads to up-

regulation of NO-guanylate cyclase pathway [133]

and cGMP production [2, 42, 140]. Hence, a deficit of

DA in the striatum, as it is in PD, should imply a re-

duced stimulation of D1 receptor and decreases in the

cAMP and cGMP synthesis. Unexpectedly, a lesion of

nigrostriatal dopaminergic pathway with 6-hydroxy-

dopamine (6-OHDA) induces an increase in cAMP

level several weeks thereafter, as evidenced by an in-

creased basal adenylate cyclase activity in the DA-

denervated rat striatum when compared to the contra-

lateral side [69]. Unlike cAMP, cGMP level decreases

in response to striatal DA loss [134]. Such a decrease

in cGMP level is associated with decreased nNOS ex-

pression and activity, probably leading to a down-

regulation of NO-sGC pathway [134]. The intracellu-

lar levels of cAMP and cGMP are controlled not only

by the rate of their synthesis via adenylate and guany-

late cyclase, respectively, but also by the rate of their

degradation via PDEs. It has been demonstrated in

6-OHDA lesioned rats that DA loss in the striatum is

associated with an increased expression and activity

of phosphodiesterase 1B (PDE1B) [134], a calcium/

calmodulin dependent phosphodiesterase, which is

abundant in the striatum and which preferentially hy-

drolyzes cGMP. In turn, activity and protein level of

phosphodiesterase 10A (PDE10A), which is also

abundant in the striatum and hydrolyzes cAMP with

higher specificity than cGMP, was decreased under

conditions of striatal DA deficit [59].

Administration of L-dopa, the commonly used

drug for the treatment of PD, affects levels of both cy-

clic nucleotides in the striatum [58, 69]. After chronic

treatment with this drug, high cAMP levels observed

in the ipsilateral denervated striatum are reduced and

return to the control levels of the contralateral non-

lesioned side [58, 69]. Recently, Giorgi et al. [58]

have demonstrated that chronic L-dopa treatment

regulates levels of cAMP and cGMP in a different

way in dyskinetic and non-dyskinetc 6-OHDA-lesio-

ned rats. In non-dyskinetic rats the cAMP level in-

creased in the cortex and striatum but decreased in the

globus pallidus of both ipsi- and contralateral sides,

whereas the cGMP content decreased below the base-

line levels in all these structures only on the contralat-

eral side. In dyskinetic animals, chronic L-dopa treat-

ment led to a severe decrease in cAMP and cGMP

levels in the cortex, striatum and globus pallidus on

both sides of the brain. Pretreatment with the PDE in-

hibitor zaprinast reduced the severity of L-dopa-

induced dyskinesias and partially prevented the de-

crease in the levels of cyclic nucleotides [58]. More-

over, using electrophysiological methods it has been

demonstrated that L-dopa-induced dyskinesia was as-

sociated with the loss of long-term depression (LTD)

expression at glutamatergic striatal synapses onto me-

dium spiny projection neurons. Zaprinast was able to

rescue the induction of this form of synaptic plasticity

via a mechanism requiring modulation of intracellular

levels of cGMP [117]. The latter finding suggests that

drugs selectively targeting phosphodiesterases can

ameliorate L-dopa induced dyskinesia, possibly by re-

storing physiological synaptic plasticity in the stria-

tum [117].

Summary

The above short review of the most current studies re-

ferring to the role of NO in the regulation of the neu-

ronal circuits within the striatum indicates that distur-

bances in the nitrergic transmission are an important

pathological factor in PD. It is clear that further char-

acterization of NO-sGC-cGMP signaling pathway is

critical for understanding of both normal striatal func-

tion and pathophysiological changes observed during

the course of the disease. Moreover, the above-

presented studies suggest that modulation of the NO-

sGC-cGMP signaling pathway during L-dopa therapy

may have beneficial effects in preventing L-dopa in-

duced dyskinesia. Hence, further studies in this field

may not only extend our knowledge on the role of NO
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and cGMP in the regulation of the striatum function

but also may contribute to the development of a new

form of PD therapy.
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