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Abstract:

Background: The aim of this study was to find out whether angiotensin-converting enzyme (ACE) inhibitors, enalapril and cilaza-
pril, affect the anticonvulsant action of some second-generation antiepileptics, lamotrigine (LTG), topiramate (TPM) and oxcar-
bazepine (OXC).

Methods: The effects of ACE inhibitors on antiepileptic drugs were examined in the mouse model of maximal electroshock.
Results: Enalapril (30 mg/kg ip) potentiated the anticonvulsant action of LTG, decreasing its ED5g value from 5.3 to 3.6 mg/kg (p <
0.01). The anticonvulsant activity of TPM or OXC was not modified by enalapril. Cilazapril did not affect the protective activity of
the studied antiepileptics. The interaction between enalapril and LTG could be pharmacodynamic in nature because enalapril did not
change plasma and total brain concentrations of LTG.

Conclusions: This study shows that there are no negative interactions between the studied antiepileptic drugs and enalapril or cilaza-
pril. Enalapril even enhanced the anticonvulsant activity of LTG in the MES test in mice that is thought to be a predictive model of

human generalized tonic-clonic seizures.
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Introduction

Inhibition of angiotensin-converting enzyme (ACE)
which catalyzes the formation of angiotensin II, a po-
tent vasoconstrictor, from circulating angiotensin I,
significantly lowers systemic vascular resistance,
lowers blood pressure, and improves cardiac function
[25]. Hence, ACE inhibitors are widely used for the
treatment of arterial hypertension and heart failure
[25]. Besides the peripheral, all components of the
renin-angiotensin system (RAS) are localized in the
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brain [26]. The brain RAS seems to be implicated in
stress, anxiety, depression, cognition and epilepsy [5].
Animal studies have shown that certain ACE inhibi-
tors may possess an anticonvulsant-like activity. Re-
cently, it has been reported that enalapril, a nonsulfhy-
dryl ACE inhibitor [25], impaired the triggering and
maintenance of seizures in the rat audiogenic model
of epilepsy [20]. Enalapril also enhanced the protec-
tive action of valproate in the mouse model of maxi-
mal electroshock (MES), although it did not affect the
anticonvulsant action of other classical antiepileptic
drugs (AEDs), i.e., carbamazepine, phenytoin and
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phenobarbital [13]. In this study, we examined the ef-
fects of enalapril and additionally cilazapril, another
ACE inhibitor and a commonly prescribed antihyper-
tensive agent [23], on the anticonvulsant activity of
some second-generation AEDs, lamotrigine (LTG),
oxcarbazepine (OXC) and topiramate (TPM) in the
MES model. Enalapril and cilazapril are prodrugs that
are converted to their active metabolites, enalaprilat
and cilazaprilat, in the liver [8]. LTG is an antiepilep-
tic drug which has a broad spectrum of activity, with
efficacy against partial, absence, myoclonic and
tonic-clonic seizures [9]. The main indication for
OXC is in the treatment of partial seizures [10]. TPM
can be used against many types of epileptic seizures,
including drug-resistant convulsions [10]. Addition-
ally, LTG and TPM belong to AEDs that are mostly
recommended to epileptic patients suffering from car-
diovascular diseases [22].

Materials and Methods

Animals and drugs

The study was conducted on male Swiss mice (20-26 g).
Animals were kept under standardized laboratory
conditions (a 12-h light-dark cycle, temperature of
21 £ 1°C) in colony cages with free access to food and
tap water ad libitum. The experimental groups con-
sisting of 8—16 animals were made up at random. The
experimental protocols and procedures described in
this paper were approved by the Local Ethics Com-
mittee for Animal Experiments and complied with the
European Communities Council Directive of 24 No-
vember 1986 (86/609/EEC).

Enalapril (Enarenal, Polpharma S.A., Poland), cila-
zapril (Inhibace, Roche, Switzerland), OXC (Trileptal,
Novartis Pharma GmbH, Germany), LTG (Lamitrin,
GlaxoSmithKline, UK) and TPM (Topamax, Janssen-
Cilag International N.V., Belgium) were suspended in
a 1% solution of Tween 80 (Sigma, St. Louis, MO,
USA) in distilled water. The drugs were administered
intraperitoneally (ip) in a volume of 5 ml/kg body
weight except for cilazapril which was injected in the
volume of 10 ml/kg. Cilazapril was administered
120 min, LTG and TPM 60 min, enalapril 45 min and
OXC 30 min before the tests. The pretreatment times
were taken from previous reports [13, 14, 18]. The
dose range of 20-30 mg/kg for enalapril used in this

study was based on previous experiments showing
some central effects of enalapril [4, 13, 19]. A dose of
cilazapril (20 mg/kg) was the highest dose used in the
earlier study on interactions with classical AEDs [13]
and it was applied here for comparison.

MES test

Electroconvulsions (25 mA, 50 Hz, 500 V, 0.2 s
stimulus duration) were produced by a Hugo Sachs
generator (Rodent Shocker Type 221, Freiburg, Ger-
many) and delivered via standard auricular electrodes.
The endpoint was the tonic extension of the hind
limbs. The protective activities of AEDs were deter-
mined as their ability to protect 50% of mice against
the MES-induced tonic hindlimb extension and ex-
pressed as respective median effective doses (EDsg
values in mg/kg). To evaluate the respective EDs, val-
ues for AEDs alone and in combinations with ACE
inhibitors, at least three groups of mice were chal-
lenged with MES after receiving different doses of an
AED in order to obtain a variable percentage of pro-
tection against MES. On this basis, a dose-response
curve for each AED was subsequently constructed ac-
cording to Litchfield and Wilcoxon [11]. To deter-
mine the EDsy values for AEDs, LTG was adminis-
tered at doses ranging between 3 and 7 mg/kg, OXC
at doses ranging between 8 and 18 mg/kg and TPM at
doses ranging between 20 and 90 mg/kg.

Passive avoidance and chimney test

Possible adverse effects of combined treatment with
ACE inhibitors and AEDs, such as an impairment of
memory retention in the passive avoidance task [27]
or disturbed motor coordination in the chimney test
[1], were also evaluated. In the passive avoidance
task, the pretreated mice were individually placed in
an illuminated box (12 x 20 x 15 c¢m) connected to
a dark box (24 x 20 x 15 cm) and were punished by
an electric foot shock (0.6 mA for 2 s) when entering
the dark box. Twenty four hours later, the retention
test was conducted in which the same animals with no
further pretreatment, were put into the illuminated
box and the latency (time) to enter the dark box was
recorded. The mice that avoided the dark compart-
ment for 180 s were considered to remember the task.
In the chimney test, the pretreated animals had to
climb backwards up a plastic tube (3 cm inner diame-
ter and 25 cm in length). Motor impairment was indi-
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cated as the inability of mice to climb backward up
the tube within 60 s. In both tests, mice co-
administered with ACE inhibitors and AEDs at doses
corresponding to their EDs, values, were compared to
control mice injected with vehicle. The design of
these experiments was based on previous reports [16]
and data showing that ACE inhibitors and AEDs
alone at doses applied in this study did not affect re-
tention in the passive avoidance task or motor coordi-
nation in the chimney test [2, 3, 17].

Measurement of LTG concentrations

Plasma and brain levels of LTG were estimated by
high-performance liquid chromatography (HPLC).
Mice were decapitated at times chosen to coincide
with that scheduled for the MES test and blood sam-
ples of approximately 1 ml were collected into hepar-
inized Eppendorf tubes. Simultaneously, the brains of
mice were removed from their skulls and placed into
the deep freeze at —80°C. Samples of blood were cen-
trifuged at 5,000 x g for 5 min, and plasma samples of
200 pul were stocked into the deep freeze. On the next
day, plasma samples and the brains were removed
from the freeze. The brains were weighed and ho-
mogenized using Abbott buffer (1 : 2 w/v) in an Ultra-
Turrax T8 homogenizer (IKA, Staufen, Germany).
The homogenates were centrifuged at 10,000 x g for
10 min. Plasma and brain supernatant samples were
prepared for analysis as follows: 200 pl of samples
were pipetted into a 1.5 ml plastic tube to which was
added 200 pl of 0.08 M triethylammonium phosphate
buffer solution, 400 pl of acetonitrile, and vortex-
mixed for 1 min. After centrifugation (10,000 x g for
10 min) in centrifugal filter devices (Millipore Corpo-
ration), the organic layer was removed and 20 pl of
the aqueous phase was injected into HPLC system.
The chromatograph (Dionex, Sunnyvale, CA, USA)
was equipped with a gradient pump P580 LPG and
a UV/VIS detector (UVD 340S) with a sensitivity set-
ting of 0.1 absorbance units full scale (AUFS) and
a time constant of 0.1 s. The Rheodyne 3601 injector
valve with a 20 pl sample loop was used for sample
injection. For HPLC, a stainless steel HP ODS col-
umn (200 % 4.6 mm) was used at an ambient tempera-
ture. The mobile phase was 40 mM triethylammo-
nium phosphate buffer: methanol : acetonitrile (660 :
80 : 160 v/v/v; Fluka, HPLC grade). The mobile
phase flow rate was 1.2 ml/min, and LTG absorbance
was measured at 214 nm. The peak height for LTG
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was linearly related to its concentrations, which
ranged from 0.16 to 5.0 g/ml. Plasma levels or total
brain concentrations of LTG were expressed in pg/ml
of plasma or supernatant as the means + SD of eight
determinations.

Data analysis

EDs, values were calculated by computer log-probit
analysis [11] and the 95% confidence limits obtained
were transformed to standard errors of the mean (SE)
as described previously [15]. The anticonvulsant
activities of AEDs injected alone or in combination
with ACE inhibitors, were compared with the use of
one-way ANOVA followed by the post-hoc Dunnett’s
test. A Kruskal-Wallis non-parametric ANOVA and
Dunn’s multiple comparisons test were used to ana-
lyze results from the passive avoidance task. Data ob-
tained in the chimney test were statistically evaluated
by Fisher’s exact probability test. The plasma and to-
tal brain concentrations of LTG were analyzed using
unpaired Student’s #-test. Group differences were con-
sidered statistically significant at p < 0.05.

Results

In the MES test, enalapril (30 mg/kg ip) potentiated
the anticonvulsant activity of LTG, decreasing its
EDs value from 5.3 to 3.6 mg/kg (p < 0.01, Dunnett’s
test). Enalapril did not affect the protective action of
OXC and TPM. Combined treatments of cilazapril
(20 mg/kg ip) with AEDs, did not result in any sig-
nificant changes in the EDs, values against MES
(Tab. 1). The interaction between enalapril and LTG
could be pharmacodynamic in nature as enalapril did
not change plasma or total brain concentrations of
LTG (Tab. 2). None adverse effects were observed in
the passive avoidance task (Fig. 1) and the chimney
test (Tab. 3) after simultaneous administration of stud-
ied ACE inhibitors and AEDs.

Discussion

Previous study has shown that enalapril up to the dose
of 30 mg/kg ip and cilazapril up to the dose of



Enalapril and lamotrigine in MES test
Krzysztof tukawski et al.

Tab. 1. Interactions between ACE inhibitors and antiepileptic drugs

in the MES test

Tab. 2. Effect of enalapril on plasma and total brain concentrations of
LTG

Treatment EDso n SE
(mg/kg) (mg/kg)
LTG + vehicle 53(49-5.7) 40 0.224
LTG + enalapril (30) 36(26-50* 16 0.600
LTG + enalapril (20) 50(4.2-6.0) 16 0.463
LTG + cilazapril (20) 50(42-5.8) 24 0.411
F(3,92)=23.343,
p =0.0226
0XC + vehicle 144 (12.4-16.7) 16 1.335
0XC + enalapril (30) 12.0(9.7-14.8) 24 1.482
OXC + cilazapril (20) 131 (11.6-14.8) 48 0.879
F (2, 85) = 0.6996,
p = 0.4996
TPM + vehicle 46.1 (38.0 — 55.8) 48 4503
TPM + enalapril (30) 59.5(431-82.2) 40 9.792
TPM + cilazapril (20) 31.5(20.9-47.6) 24 7.655

F (2, 109) = 2.870,
p=0.0610

Results are expressed as the median effective doses (EDsq in mg/kg)
with 95% confidence limits (in parentheses) and SE values. n — The
number of animals at those doses for which anticonvulsant effects
ranged between 4 and 6 probit, according to Litchfield and Wilcoxon
[11]. The number of comparisons between control and examined
groups with Dunnett’s test was two or three, depending on the experi-
ment. Dunnett’s test is regarded as a conservative one in controlling
type 1 error. ** p <0.01 vs. LTG + vehicle (ANOVA/Dunnett’s test)

20 mg/kg ip, did not affect the convulsive threshold
[13]. In this study, we used the same subthreshold
doses for these ACE inhibitors. Enalapril has been
found to enhance the anticonvulsant activity of LTG
in the MES test, without affecting the brain and
plasma concentrations of LTG.

The present finding is in agreement with a recent
study on the interactions between ACE inhibitors and
AEDs in the audiogenic seizure model in DBA/2 mice
[6]. De Sarro et al. have demonstrated that enalapril (30
mg/kg ip) was able to produce a significant reduction
of EDsy value of LTG against clonus [6]. The exact
mechanism of this finding remains unknown. It has
been documented that acute administration of enalapril
can affect behavior related to the central nervous sys-
tem. For example, enalapril administered at the single
dose of 20 mg/kg ip decreased ethanol-induced hyper-
activity and reduced ethanol sleeping time in mice [4].

Treatment Plasma concentrations Brain concentrations
(mg/kg) (ug/ml) (pg/ml)
LTG (3.6) + vehicle 1.709 +0.129 0.692 +0.189
LTG (3.6) + enalapril (30) 1.593 +0.200 0.709 +0.142

Data are presented as the means + SD of eight separate determina-
tions. Not significant vs. control group (Student’s t-test)

Tab. 3. Interactions between ACE inhibitors and antiepileptic drugs
in the chimney test

Treatment (mg/kg) n % of mice impaired

Control

LTG (3.6) + enalapril (30)
0XC (12) + enalapril (30)
TPM (59.5)+ enalapril (30)
Control

LTG (5.0) + cilazapril (20)
0XC (13.1) + cilazapril (20)
TPM (31.5)+ cilazapril (20)

o OO0 OO0 OO OO OO OO
G

oo o o M o o
o o

Results are presented as the percentage of animals that failed to per-
form the chimney test. Control animals received injections of the vehi-
cle. n — The number of animals. Not significant vs. control groups
(Fisher’s exact probability test)

It has been suggested that enalapril interacts with
ethanol in the brain, possibly due to its influence on
neurotransmitter systems [4]. Also, enalapril given
orally up to the single dose of 30 mg/kg, reduced the
amnesiogenic effect of cerebral electroshock treat-
ment and improved passive avoidance learning if ad-
ministered before the learning trial in mice [19].
Recently, Pereira at al. reported that chronic oral
treatment with enalapril (10 mg/kg) decreased seizure
severity and significantly impaired activity of ACE in
the hippocampus in Wistar audiogenic rats [20]. Fur-
ther, enalaprilat, the active metabolite of enalapril, has
been demonstrated to distribute in the brain when
measured one hour after acute treatment [29]. This
could suggest a possible role of the inhibition of the
brain ACE by enalaprilat in the observed phenome-
non. Moreover, cilazapril which is unable to cross the
blood-brain barrier [7] did not show any anticonvul-
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Fig. 1. Interactions between ACE in-
hibitors and antiepileptic drugs in
the passive avoidance test. Data are
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sant activity indicating that the peripheral ACE inhi-
bition has not been involved. On the other hand, a sin-
gle oral administration of some ACE inhibitors in-
cluding enalapril, has not been shown to affect the
brain ACE [24]. Additionally, the lack of a positive
effect between enalapril and TPM or OXC was ob-
served in this study. Thus, the functional inhibition of
the brain RAS, by the decreased activity of ACE, does
not seem to be responsible for the phenomenon.
It is known that LTG inhibits voltage-dependent
sodium and calcium currents, reduces veratridine-
induced synaptic release of glutamate and is an effec-
tive antagonist of AMPA receptors [9, 10]. On the
other hand, pharmacological mechanisms of AEDs,
which are related to sodium channels, NMDA recep-
tors, AMPA receptors and/or voltage-dependent cal-
cium channels could be positively affected by certain
ACE inhibitors in terms of seizure susceptibility [6].
It has been documented that enalapril was protective
against glutamate-induced damage in cultured neu-
rons [21]. It can be speculated that LTG combined
with enalapril may provide enhanced protection
against glutamate-induced neuronal excitation. This
could lead to the positive effect observed in the MES
test. The anticonvulsant action of OXC does not
rather depend on the inhibition of glutamate excita-
tion [10]. TPM inhibits glutamatergic system activity
[10] but enalapril showed a tendency (statistically not
significant) to diminish the anticonvulsant action of
TPM rather than to enhance it. However, other
mechanisms responsible for the better protection of
mice injected with both LTG and enalapril against
MES-induced seizures are also possible.
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Enalapril and cilazapril have been used at doses at
which their hypotensive activities should be assumed
[28]. However, it seems very unlikely that this could
interfere with the observed results in the MES test.
None of the tested combinations of the drugs, including
LTG (3.6 mg/kg) + enalapril (30 mg/kg) group,
showed impaired motor coordination in the chimney
test. Additionally, the combined treatment with LTG
(3.5 mg/kg) and enalapril (30 mg/kg) did not influence
the locomotor activity of mice in the rotarod test [6].

In conclusion, the combined treatment with the
studied ACE inhibitors and OXC or TPM, and the
combination of cilazapril with LTG seem neutral re-
garding the anticonvulsant potency of the antiepilep-
tic drugs. Enalapril potentiated the anticonvulsant ac-
tion of LTG in the MES test in mice that is thought to
be a predictive model of human generalized tonic-

clonic seizures [12].
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