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Abstract:

Background: Here, we analyzed the dose- (0.2, 2, 20, 200 nM or 2 µM) and time- (48, 96, 144 and 196 h) dependent activity of a sin-

gle or repeated exposure of methyl-, butyl- and propylparaben on the proliferation of MCF-7 human breast cancer cells and

MCF-10A human breast epithelial cells. Additionally, the effect on estradiol secretion, gene and protein expression of aromatase

(CYP19A1) was investigated.

Methods: Cell proliferation was determined by AlamarBlue assay, and estradiol secretion by ELISA kits. Gene and protein expres-

sion of CYP19A1 was measurement using real time PCR and western blot, respectively.

Results: Stimulatory effect of a single exposure of all doses of tested parabens and time dependent effect of repeated exposure to

methylparaben, propylparaben and butylparaben, the same as that of 17b-estradiol, on proliferation of MCF-7 cells was observed.

Only at low doses methyl- and butylparabens increased MCF-10A cells proliferation after single exposure, but no effect of repeated

exposure was noted. Exposure at low doses of all of the parabens significantly increased 17b-estradiol (E2) secretion in MCF-7 cells

but had the opposite effect on MCF-10A cells. It was correlated with gene and protein expression of CYP19A1 in MCF-7 and

MCF-10 cells.

Conclusions: In summary, present study indicates a different mechanism of proliferative action of parabens in investigated cell

lines. In MCF-7 breast cancer cell line it is probably due to stimulatory action on estradiol secretion and aromatase activity. In

MCF-10Aby an unknown mechanism, independent on stimulatory action on estradiol section, which requires further investigation.
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Introduction

Due to their antibacterial and preservative properties,

alkyl esters of p-hydroxybenzoic acid (parabens) are

commonly used in thousands of cosmetic products,

including products for children [10]. The most widely

used esters are methylparaben, ethylparaben, n-propyl-

paraben, n-butylparaben and isobutylparaben.

Although, the epidemiological evidence [20] sug-

gesting a link between the cosmetics used on the un-

derarm and breast cancer in women is limited, infor-

mation on genetic and familial breast cancers suggests

that only a small minority of cases have a genetic eti-

ology [3]. The majority of breast cancers, therefore,

probably results from epigenetic changes that are in-

duced by environmental and lifestyle factors. Data
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published by Ellsworth et al. [11] showed increased

levels of genomic instability in the outer regions of

the human breast in histologically normal tissue. In

another publication, these authors suggested that can-

cer results from topically applied cosmetics [12]. The

analysis of the annual quadrant incidence of breast

cancer in Britain showed that 54% of breast cancers

occurred in the upper outer quadrant, and the inci-

dence cancer in these locations has been rising line-

arly since 1979 [5].

Moreover, parabens in their original form were de-

tected in both the mammary gland and in breast can-

cer tissues [7]. For more than a century, epidemiologi-

cal, clinical and experimental studies have confirmed

that estrogen plays a central role in the development,

progression and treatment of breast cancer [14, 19];

thus, it is important to identify the potential interac-

tions of environmental chemicals that can enter the

human breast and mimic estrogen action.

The estrogenic activity of parabens was first re-

ported in 1998 [26]. Parabens have been shown to

bind to estrogen receptors in the rodent uterus [2, 13,

26] and in MCF7 human breast cancer cells [3, 6, 8].

They have been shown to upregulate the expression of

the estrogen responsive reporter gene in yeast [23, 25,

26] and human breast cancer cells [3, 6, 8], and para-

bens can upregulate the endogenous estrogen-

regulated gene pS2 [3] in breast cancer cells. Para-

bens have also been shown to increase the uterine

weight in immature rats [26] and mice [6, 8]. The fact

that the estradiol-receptor blocker ICI182780 reverses

the proliferative action of parabens in MCF-7 cells

suggests that they bind estrogen receptors [3, 6, 8].

Because paraben-containing cosmetics are applied

every day, in this study we compared not only the ef-

fects of single and repeated in vitro exposure of three

forms of the parabens, methyl-, butyl- and propylpa-

raben, on cellular proliferation and estradiol secretion,

but we also compared two different cell types: human

breast cancer cells (MCF-7) and human breast epithe-

lial cells (MCF-10A).

Materials and Methods

Reagents

Dulbecco’s modified Eagle’s medium without phenol

red (DMEM), Dulbecco’s modified Eagle’s medium

and Ham’s F12 medium (1 : 1) without phenol red

(DMEM/F12), charcoal-dextran, insulin, hydrocorti-

sone and epidermal growth factor (EGF) were ob-

tained from Sigma Chemical Co. (St. Louis, MO,

USA). Fetal bovine serum (FBS, heat inactivated),

horse serum (HS, heat inactivated), penicillin, strepto-

mycin, and trypsin EDTA were obtained from PAA

Laboratories GmbH (Colbe, Germany). 17b-Estradiol

(E2) was obtained from Steraloids, Inc. (Newport, RI,

USA). Phosphate-buffered saline (PBS) was pur-

chased from Biomed (Lublin, Poland). Methylpara-

ben, n-propylparaben and n-butylparaben (Sigma

Chemical Co., St. Louis, MO, USA) were dissolved

in absolute ethanol. The final concentration of ethanol

in the medium for each paraben was 0.2%. At this

concentration, ethanol has no effect on cell prolifera-

tion and apoptosis (data not shown). AlamarBlue was

obtained from Invitrogen (Carlsbad, CA, USA), and

the DRG Estradiol ELISA Kit was obtained from

DRG Instruments GmbH (Marburg, Germany).

Cell culture

MCF-7 human breast cancer cells (ATCC, Manassas,

VA, USA, passage No. 146) were routinely cultured

in DMEM supplemented with 10% heat-inactivated

FBS, 100 IU/ml of penicillin and 100 µg of strepto-

mycin. Twenty-four hours before the experiments, the

medium was removed and replaced with DMEM

without phenol red supplemented with 5% dextran-

coated, charcoal-treated FBS (5% DC-FBS) to ex-

clude estrogenic effects caused by the medium. Then,

the cells were plated in the same medium and allowed

to attach overnight.

MCF-10A human breast epithelial cells (ATCC,

Manassas, VA, USA, passage No. 105) were routinely

cultured in DMEM/F12 supplemented with 20 ng/ml

epidermal growth factor, 0.01 mg/ml insulin, 500 ng/

ml hydrocortisone, 5% heat-inactivated HS, 100 IU/

ml of penicillin and 100 µg of streptomycin. Twenty-

four hours before the experiments, the medium was

removed and replaced with DMEM/F12 without phe-

nol red supplemented with 0.01 mg/ml insulin,

500 ng/ml hydrocortisone, and 5% dextran-coated

charcoal-treated HS (5% DC-HS). Then, the cells

were plated in the same medium and allowed to attach

overnight.

The cells were cultured in a humidified atmosphere

at 5% CO2 at 37°C.
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Real-time PCR analysis

The MCF-7 cells were seeded in 96-well plates at

a density of 15 × 103 cells per well, whereas MCF-

10A cells were seeded at a density of 12 × 103 cells

per well. Methylparaben, n-propylparaben and n-

butylparaben were added at dose of 20 nM and 17b-

estradiol was added at dose of 100 nM for 24 h. Total

RNA isolation and cDNA synthesis was performed

using the TaqMan Gene Expression Cell-to-CT Kit

(Applied Biosystems, Carlsbad, CA, USA) according

to the manufacturer’s protocol. The lysis solution con-

tained DNAse I to remove genomic DNA during the

cell lysis. Resulting pre-amplified cDNA preparations

were analyzed by real-time PCR in a StepOnePlus

Real-time PCR System (Applied Biosystems, Foster

City, CA, USA) using the TaqMan Gene Expression

Assay in combination with TaqMan Gene Expression

Master Mix containing ROX (Applied Biosystems,

Foster City, CA, USA) according to the manufactur-

er’s instructions. The following PCR conditions were

used: incubation for 2 min at 50°C, followed by incu-

bation for 10 min at 95°C, 40 cycles (denaturation

step: 15 s at 95°C; annealing/elongation step: 60 s at

60°C). Duplicate samples without cDNA for each

gene showed no DNA contamination.

The relative expression of CYP19A1 (Hs-

00903413_m1) was normalized to GAPDH (Hs-

99999905_m1) (DCt) to compensate for differences in

the amount of cDNA (assay identification number)

and converted to a relative expression quantity using

the 2�DDCT method [18]. TaqMan Gene Expression As-

say (Hs00903413_m1) coding homo sapiens cyto-

chrome P450, family 19, subfamily A, polypeptide 1

(CYP19A1), transcript variant 1, mRNA (NCBI Ref-

erence Sequence: NM_000103.3) and transcript vari-

ant 2, mRNA (NM_031226.2).

Western blot

The MCF-7 cells were seeded in 48-well plates at

a density of 15 × 104 cells per well, whereas MCF-

10A cells were seeded at a density of 2 × 105 cells per

well. Methylparaben, n-propylparaben and n-butyl-

paraben were added at a dose of 20 nM and 17b-estra-

diol was added at a dose of 100 nM. After 24 h of in-

cubation, cells were transferred into ice-cold lysis

buffer (50 mM Tris-HCl pH 7.5; 100 mM NaCl; 0.5%

Na-deoxycholate; 0.5% Nonidet NP-40; 0.5% sodium

dodecyl sulfate and protease inhibitor EDTA-free).

Total cell lysates were prepared and stored at –70°C.

Protein concentrations were determined using the

Bradford reagent (Bio-Rad Protein, Bio-Rad Labora-

tories, Inc., CA, USA). Equal amounts of protein

(20 µg) were separated by 10% SDS-polyacrylamide

gel electrophoresis in a Bio-Rad Mini-Protean II Elec-

trophoresis Cell. After electrophoretic separation, the

proteins were electrotransferred to PVDF membranes

and washed. The blots were blocked in 5% dry milk

with 0.1% Tween-20 in 0.02 M TBS buffer for 1 h.

Blots were incubated overnight with antibodies spe-

cific to CYP19 (sc-14244, from Santa Cruz Biotech-

nology) and b-actin (A5316, from Sigma Chemical

Co., MO, USA). After incubation with the primary

antibody, the membranes were washed three times

and incubated for 1 h with a horseradish peroxidase-

conjugated secondary antibody: P0447 (DakoCyto-

mation, Denmark) for b-actin and sc-2020 (Santa

Cruz Biotechnology) for CYP19. Bands were de-

tected by chemiluminescence (ECL) using Western

Blotting Luminol Reagent (sc-2048, Santa Cruz Bio-

technology) and visualized using a ChemidocTM

XRS+ System (BioRad, Laboratories). Data visual-

ized by chemiluminescence were quantified using

a densitometer and quantitated with Image LabTM

2.0 Software (Bio-Rad, Laboratories).

Estradiol secretion

As in proliferation assay, the MCF-7 cells were

seeded in 96-well culture plates at a density of 9 × 103

cells per well, while the MCF-10A cells were seeded

at a density of 12 × 103 cells per well. The cells were

cultured in the appropriate medium (see cell culture)

at five different doses (0.2, 2, 20, 200 nM, or 2 µM) of

methylparaben, n-propylparaben and n-butylparaben

for 72 h. At the end of the culture, the media were col-

lected and stored at –20°C.

The estradiol concentrations were determined us-

ing the enzyme immunoassay DRG Estradiol ELISA

Kit (DRG Instruments GmbH, Marburg, Germany)

according to the manufacturer’s instructions. The

sensitivity of the assay was 9.714 pg/ml, the intra-

assay variation was 4.13–6.81%, the inter-assay varia-

tion was 7.25–9.39%, and the linear range was

0–2000 pg/ml. The absorbance values were measured

at a wavelength of 450 nm using an ELISA reader

(ELx808 BIO-TEK Instruments, USA).
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Cell proliferation

The AlamarBlue colorimetric assay was used to evalu-

ate cell proliferation. Metabolically active cells convert

resazurin to the fluorescent metabolite resorufin, and the

fluorescence reading of the sample is proportional to the

number of living cells in the sample.

MCF-7 cells were seeded in 96-well culture plates at

a density of 9 × 103 cells per well, whereas MCF-10A

cells were seeded at a density of 12 × 103 cells per well.

Methylparaben, n-propylparaben and n-butylparaben

were added at doses of 0.2, 2, 20, 200 nM or 2 µM and

17b-estradiol was added at a dose of 100 nM. To

evaluate the activity of a single exposure, the para-

bens were added once at the beginning of the culture.

After 3 days, the culture medium was replaced with

fresh media without compounds and incubated for 3

more days. To evaluate the action of repeated expo-

sures, the parabens were added at the beginning and

then every 48 h for 6 days. Thus, the compounds were

added three times during the experiment.

After 48, 96, 144 and 194 h of culture in the repeated

exposure experiments and at the end of the culture in the

single exposure experiments, AlamarBlue stock solution

was aseptically added to the wells in amounts equal to

10% of the incubation volume and was incubated for 5 h
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Fig. 1. The effect of methyl-, propyl- and butylparabens on (A) CYP19A1 mRNA expression after 24 h exposure. CYP19A1 mRNA determined
by real time PCR and expressed as relative values to basal conditions and (B) CYP19A1 protein expression determined by western blot.
CYP19A1 densitometry results were normalized to b-actin loading controls to obtain (CYP19A1/b-actin ratio). All data were derived from a mini-
mum of three independent experiments using different cell preparations. All means marked with * (p < 0.05) and ** (p < 0.01) are significantly
different from the control



with the cells. The resazurin reduction was measured

at a 540 nm excitation wavelength and 590 nm emis-

sion wavelength using a FLUORO-microplate reader

(BIO-TECH Instruments, USA).

Statistical analysis

Each experiment was repeated three times (n = 3), and

every repetition of each experiment was run in quad-

ruplicate. The statistical analyses were performed us-

ing GraphPad Prism 5. The data were analyzed by

one-way analysis of variance (ANOVA) followed by

Tukey’s Honestly Significant Differences (HSD) mul-

tiple range test.

Results

Action of methyl-, butyl- and propylparabens

on CYP19A1 gene (Fig. 1A) and protein

expression (Fig. 1B) in MCF-7and MCF-10A cells

CYP19A1 mRNA expression was detected in both

MCF-7 breast cancer cells and MCF-10A human breast

epithelial cells. In MCF-7 cells, CYP19A1 mRNA

expression significantly increased after treatment with

methyl- and propylparabens (p < 0.01) while in

MCF-10A cells, all tested parabens statistically signifi-

cantly decreased CYP19A1 mRNA expression (p < 0.5).

CYP19A1 protein expression was detected in both

MCF-7 breast cancer cells and MCF-10A human

breast epithelial cells. In MCF-7 breast cancer cells

CYP19A1 protein expression significantly increased

after exposure to methyl- and propylparabens

(p < 0.5) while in MCF-10A cells all tested parabens

decreased CYP19A1 protein expression (p < 0.5).

The effect of methyl-, butyl- and propylparabens

(Fig. 2A) on estradiol secretion in MCF-7 breast

cancer cells

A seventy-two hour exposure to methylparaben at

doses of 0.2, 2 and 20 nM caused a statistically sig-

nificant increase in estradiol secretion (p > 0.05).

Butylparaben stimulated estradiol secretion (p > 0.05)

only at the lowest dose (0.2 nM). A 2-fold stimulatory

action on estradiol secretion was observed in the pres-

ence of propylparaben at doses of 0.2, 2, 20 and

200 nM (p > 0.001).

The effect of methyl-, butyl- and propylparabens

(Fig. 2B) on estradiol secretion in MCF-10A

breast epithelial cells

At all tested doses, methylparaben and butylparaben

decreased E2 secretion (30% below the control, p >

0.05). Propylparaben caused a statistically significant

decrease in estradiol secretion in MCF-10A cells only

at the two highest doses (200 nM and 2 µM) (p < 0.05

and p > 0.01, respectively).
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Fig. 2. Estradiol secretion by (A) MCF-7 and (B) MCF-10A breast
epithelial cells after 72 h of exposure to methyl-, butyl- and propylpara-
bens. Each point represents the mean ± SEM of results from three in-
dependent experiments; each experiment consisted of six replicates
per treatment group. All of the means that are marked with * (p < 0.05);
** (p < 0.01) and *** (p < 0.001) are significantly different from the control



The effect of a single exposure of parabens

(methyl-, butyl- and propylparabens) and

17b-estradiol on the proliferation of MCF-7

(Fig. 3A) and MCF-10A (Fig. 3B) cells

17b-Estradiol alone at a concentration of 100 nM

caused a statistically significant increase in the prolif-

eration of MCF-7 cells (25% above the control, p <

0.05) but not in the proliferation of MCF-10A cells.

Exposure of MCF-7 (Fig. 3A) cells to methyl-,

butyl- and propylparaben at doses of 0.2, 2, 20 and

200 nM caused a statistically significant increase in

the proliferation of MCF-7 cells compared to the con-

trol (40% above control, p < 0.01) and to 17b-estra-

diol (15% above estradiol, p < 0.05).

Exposure of MCF-10A (Fig. 3B) cells to methylpa-

raben and butylparaben at doses of 2, 20 and 200 nM

caused a statistically significant increase in the basal

proliferation of MCF-10A cells (30% above control,

p < 0.05). Propylparaben had no effect on MCF-10A

cell proliferation.

The effect of repeated exposure of parabens

(methyl-, propyl- and butylparabens) and

17b-estradiol on the proliferation of MCF-7

(Fig. 4A–C) and MCF-10A (Fig. 4D–F) cells

17b-Estradiol alone at a concentration of 100 nM

caused a statistically significant increase in the prolif-

eration of MCF-7 cells (30% above the control after

96 h, p < 0.05; 25% above the control after 144 h and

194 h, p < 0.05).

Methylparaben (Fig. 4A) used at doses of 0.2 and

2 nM, which were the same levels as 17b-estradiol,

caused a statistically significant increase in the prolifera-

tion of MCF-7 cells (25% above the control, p < 0.05

after 144 h), and in all tested doses after 194 h of culture.

After only 96 h of culture at all of the tested doses,

butylparaben (Fig. 4B) caused a statistically signifi-

cant increase in the proliferation of MCF-7 cells

(from 35 to 45% above the control, p < 0.01). Butyl-

paraben doses of 0.2, 2, 20 and 200 nM had a stronger

effect than 17b-estradiol (15% to 25% above estra-

diol, p < 0.05).

After 96, 144 and 194 h of culture at all of the

tested doses, propylparaben (Fig. 4C) caused a statis-

tically significant increase in cell proliferation in the

same manner as 17b-estradiol (from 25 to 30% above

the control, p < 0.05).

Any statistically significantly effect on cell prolif-

eration was observed after exposure of MCF-10A to

both 17b-estradiol and parabens (Fig. 4D–F).

Discussion

The presented results showed CYP19A1 gene, protein

expression and estradiol secretion in both cell lines.

Additionally, presented results showed higher basal

estradiol secreted by MCF-10A than MCF-7 cells.

The presence of CYP19A1 gene expression in MCF-7
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Fig. 3. The effect of a single exposure to different concentrations of
methyl-, butyl- and propylparabens on the proliferation of (A) MCF-7 hu-
man breast cancer cells and (B) MCF-10A human breast epithelial
cells. To evaluate the activity of a single exposure, the parabens were
added once at the beginning of the culture. After 3 days, the culture me-
dium was replaced with fresh media without compounds and incubated
for 3 more days. Each point represents the mean ± SEM from three inde-
pendent experiments; each experiment consisted of six replicates per
treatment group. All of the means that are marked with * (p < 0.05) or
** (p < 0.01) are significantly different from the control



described by Hevir et al. [15] confirms our results.

However, according to Hevir et al. [15] MCF-10A did

not expressed CYP19A1 gene expression. This dis-

crepancy requires further investigation, taking into

consideration identical culture conditions and method

for the determination of gene expression. It should be

noted that Hevir et al. [15] and our presented data are

the only showing CYP19A1 gene expression in
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Fig. 4. The effect of repeated exposures to different concentrations of methylparaben (A), propylparaben (B) and butylparaben (C) on the pro-
liferation of MCF-7 breast cancer cells and effect of repeated exposures of methylparaben (D), propylparaben (E) and butylparaben (F) on the
proliferation of MCF-10A breast epithelial cells after 48, 96, 144 and 194 h of culture. To evaluate the action of repeated exposures, the medium
was changed before the repeated treatment with parabens. The parabens were added at the beginning and then every 48 h for 6 days. Thus,
the compounds were added three times during the experiment. Each point represents the mean ± SEM from three independent experiments;
each experiment consisted of six replicates per treatment group. All of the means that are marked with * (p < 0.05) and ** (p < 0.01) are signifi-
cantly different from the control
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MCF-10A cells. However, results of our study were

supported by demonstrating not only CYP19A1 gene

but also protein expression and estradiol secretion.

The second interesting finding presented here is

stimulatory effect of methyl- and propylparaben on

CYP19A1 gene, protein expression and estradiol secre-

tion in MCF-7 cell line. Our results indicate that estro-

genic action of parabens is not only a consequence of

the estradiol receptor binding capabilities [13, 15] and

activities as exogenous estrogens, but is also the result

of an ability to stimulate the secretion of estradiol. The

increase in E2 secretion in MCF-7 cells is mostly due

to the stimulatory effect of parabens on CYP19A1

gene, protein expression. The opposite effect was noted

in MCF-10 cells line. Inhibitory effect of all tested pa-

rabens on CYP19A1 gene, protein expression and estra-

diol secretion was described. This results are in agree-

ment with data of von Meeuwen et al. [29], who

showed inhibition of aromatase by methyl-, ethyl-, pro-

pyl- and isopropylparabens.

In the next part of this study, we looked for the ac-

tion of parabens on cells proliferation. These results

show a stimulatory effect of a single in vitro exposure

to all of the tested parabens at all doses used on

MCF-7 human breast cancer cells. A stimulatory ac-

tivity on the proliferation of MCF-10A human breast

epithelial cells was observed only at low doses of

methyl- and butylparabens.

There are data concerning the activity of parabens on

breast cancer cell lines. Boyford et al. [3] showed

a stimulatory effect of parabens on the proliferation of

MCF-7 cells at concentrations of 1 and 10 mM, whereas

there was an absence of any effect of the test compounds

at lower concentrations (0.1 nM to 0.1 mM). Similar find-

ings were reported by both Okubo et al. [23] after 6 days

of exposure and also by Pugazhendhi et al. [25] after

7 days of exposure. Increased MCF-7 cells proliferation

after treatment with parabens have been also described by

Vanparys et al. [27] and van Meeuwen et al. [29].

Darbre et al. [5, 8] using the estrogen-dependent

breast cancer cell lines MCF-7, ZR-75-1 and the es-

trogen receptor negative MDA-MB-231 human breast

cancer cell line, showed that isobutylparaben and ben-

zylparaben used at doses from 1 to 100 mM increased

the proliferation of MCF-7 and ZR-75-1 cells; how-

ever, both of the test compounds had no proliferative

effects on the MDA-MB-231 estrogen-receptor-nega-

tive cell line. In the data presented here, using very

low doses of parabens (nM and µM), we noted an in-

crease in cell proliferation in both cell lines.

Additionally, most of these authors count cells in

a Cultured Counter, whereas in our experiment, we

used methods that measure the cellular viability func-

tions as an indicator of cellular health to quantita-

tively measure the proliferations. From our experi-

ence (data not published), parabens used in doses

higher than 20 µM have a cytotoxic effect.

To our knowledge, these data are the first to dem-

onstrate the effect of parabens on the proliferation of

MCF-10A cells. MCF-10A is a spontaneously immor-

talized but nontransformed human mammary epithe-

lial cell line and is often considered to represent nor-

mal human mammary epithelial cells. However,

MCF-10A cells acquire the ability to transform into

cancer cells under the action of carcinogenic [1], mu-

tagenic [31] and dioxin-like compounds such as

TCDD, PCDF and PCB [28]. This ability, among oth-

ers, is manifested by an increase in cell proliferation

[1, 28, 31]. The results presented here suggest that pa-

rabens can also initiate the process of MCF-10A

transformation. However, this hypothesis still requires

a thorough examination. The fact that all of the above

mentioned authors observed a stimulatory activity of

parabens only at high doses may be due to different

culture conditions and a preincubation in medium

supplemented with insulin and 17b-estradiol. It was

observed that estradiol protects the human breast can-

cer cell line MCF-7 from apoptosis induced by UV ra-

diation [24]. Sang-Han Lee et al. [17] showed that E2

may partly provide a survival advantage through the

regulation of cellular oxidative homeostasis in MCF-7

breast cancer cells.

Our studies show for the first time that at low doses

parabens have the potential to stimulate the prolifera-

tion of MCF-7 and MCF-10A cells. This response is

widely considered to be a curve-linear or hormesis re-

sponse and is characterized by a modest stimulatory

effect at low doses and an inhibition or absence of

a response at high concentrations [4]. In toxicology,

an expected dose-response relationship is frequently

used as a basis for risk assessment. The threshold

model, or the linear non-threshold (LNT) model, is

commonly used. Early investigations showed that es-

trogens are mitogens and can stimulate cell prolifera-

tion at very low concentrations [30]. Many xenoestro-

gens have the potential to cause responses at low

doses and can cause inhibition or toxicity at large

doses. For example, this was demonstrated for expo-

sure to low doses of bisphenol A, octylphenol and the

estrogenic drug diethylstilbestrol [9, 16, 21]. There-
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fore, man made xenoestrogens should receive special

treatment during risk assessment because even very

low concentrations may cause responses deviating

from the norm.

Surprisingly, methylparaben, butylparaben and

propylparaben had no effect on the proliferation of

MCF-10A cells after repeated exposure; the lack of an

effect was independent of the concentration used. The

stimulatory effect of methylparaben after 144 h of

culture and propylparaben after 96 h of culture was

the same as that of 17b-estradiol, whereas after only

96 h of culture, butylparaben increased the prolifera-

tion of MCF-7 cells to higher levels than did estradiol.

To our knowledge, there are no data that test the influ-

ence of repeated exposure of these compounds. How-

ever, it is important to consider that parabens, which

are present in most cosmetics, are applied daily – not

just once. Parabens have been shown to bind to estro-

gen receptors (a and b) from different sources, in-

cluding the rodent uterus [2, 13, 26] and MCF7 hu-

man breast cancer cells [3, 6, 8]. Using the antiestro-

gen ICI 182 780, the estrogen-receptor mediated

stimulatory effects of parabens on the proliferation of

MCF-7 cells has been shown [3, 6, 8]. There are data

showing upregulation of the expression of the estro-

gen responsive reporter gene in yeast [23, 25, 26] hu-

man breast cancer cells [3, 6, 8] and the estrogen-

regulated gene pS2 [3] in breast cancer cells under the

influence of parabens. Similar to other environmental

estrogens, butylparaben has also been shown to alter

reproductive function in male rats, including a reduc-

tion in sperm counts [22]. An increase in uterine

weight in immature rats [26] and immature mice [6,

8] confirm the estrogenic activity of parabens. Our

data show that butylparaben has the strongest estro-

genic activity – as strong as estradiol. There are stud-

ies indicating that the estrogenic activity of parabens

increases with an increasing length of the linear alkyl

chain [3, 26] and with branching in the alkyl chain.

This would predict that butylparaben would have the

highest estrogenic potential. Indeed, the data shown

here support this hypothesis.

In summary, present study indicates a different

mechanism of proliferative action of parabens in in-

vestigated cell lines. In MCF-7 breast cancer cell lines

this is probably due to stimulatory action on estradiol

secretion and aromatase activity. In MCF-10A by an

unknown mechanism, independent on stimulatory ac-

tion on estradiol section, which requires further inves-

tigation.
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