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Abstract:

Background: Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a Chinese herbal anthraquinone derivative from the rhizome of
rhubarb (Rheum palmatum L.) that exhibits numerous biological activities, such as antitumor, antibacterial, antiinflammatory, and
immunosuppressive. In the present studies, the anti-allergic activities of emodin were investigated to elucidate the underlying active
mechanisms.
Methods: The inhibitory effects of emodin on the IgE-mediated allergic response in rat basophilic leukemia (RBL-2H3) cells were
evaluated by measuring the release of granules and cytokines. The Ca2+ mobilization in RBL-2H3 cells loaded with the Ca2+-reactive
fluorescent probe Fluo-4 AM was also measured by laser scanning confocal microscope.
Results: Emodin inhibited the release of b-hexosaminidase (b-HEX; IC50 = 5.5 µM) and tumor necrosis factor (TNF)-a (IC50 = 11.5 µM)
from RBL-2H3 cells induced by 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) and displayed stronger inhibition of
b-HEX release than ketotifen fumarate salt (IC50 = 63.8 µM). Emodin at a concentration of 12.5 µM also inhibited the DNP-BSA-
induced influx of extracellular Ca2+ in RBL-2H3 cells.
Conclusions: These results suggested that emodin likely exhibits anti-allergic activities via increasing the stability of the cell mem-
brane and inhibiting extracellular Ca2+ influx.
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Introduction

Allergy, a serious health problem worldwide, is due to
immune dysfunction. Substances that cause allergic
reactions are called allergens, including dust mites,
pollen, cosmetics, food, and mold spores. Immediate
hypersensitivity (type I allergy), is an immunoglobu-

lin E (IgE)-mediated immune response, resulting in
conditions such as food allergies, hay fever, asthma,
and drug-induced allergies. The number of patients
with these conditions is increasing worldwide [8].
Mast cells and basophils are well-known as critical
participants in various biologic allergic disease pro-
cesses [2, 18]. These cells express receptors on their
surface membranes that have high affinity and speci-
ficity for IgE. Interactions between multivalent anti-
gens and surface-bound IgE release histamine, prosta-
glandins, leukotrienes, and cytokines [16, 17]. These
cytokines activate chemotaxis and phagocytosis of
neutrophils and macrophages. Finally, the cytokine-

1216 Pharmacological Reports, 2012, 64, 1216�1222

Pharmacological Reports
2012, 64, 1216�1222
ISSN 1734-1140

Copyright © 2012
by Institute of Pharmacology
Polish Academy of Sciences



induced reaction causes tissue inflammation. Anti-
allergic agents, such as antihistamines, steroids, and
immunosuppressants, have been used to treat allergic
diseases including allergic rhinitis, atopic dermatitis,
asthma, and food allergies [19–21]. However, many
of these medications have undesirable side effects and
adverse reactions. Instead, bioactive constituents from
herbal medicines have been used for treatment of al-
lergic diseases, and their effectiveness has received
increasing attention.

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is
a major active component of a herbal medicine derived
from rhubarb, the rhizome of Rheum palmatum L.,
aloe, senna leaves, and Polygonum multiflorum roots.
Rhubarb has shown mild laxative properties in tradi-
tional Chinese medicine [22] in pharmacological
studies. Additionally, emodin was found to have anti-
tumor, antibacterial, diuretic, and vasorelaxant effects
[9, 24]. Moreover, emodin has shown antiinflamma-
tory and immunosuppressive effects [7, 10]. The
underlying mechanisms, however, are still not fully
understood.

RBL-2H3 cells were previously used to study com-
prehensive events on mast cells induced by multivalent
allergens [12]. In this study, we selected the 2,4-
dinitrophenyl (DNP)-specific immunoglobulin E (IgE)
to sensitize RBL-2H3 cells and the antigen DNP-
bovine serum albumin (DNP-BSA) to stimulate cells,
which is a classic way to study the effects of unknown
compounds on antigen-induced activation of mast
cells. We examined the effects of emodin on the
degranulation and release of tumor necrosis factor-a
(TNF-a). In addition, the effect of emodin on extra-
cellular Ca2+ influx inhibition was examined to eluci-
date the underlying mechanism.

Materials and Methods

Materials

Emodin was purchased from Shaanxi ZhongXin Bio-
technology Co. Ltd. (Xi’an, China; purity > 98%).
Monoclonal anti-DNP IgE (#D8406), 4-nitrophenyl-
N-acetyl-b-D-glucosaminide (#N9376, purity > 98%),
thiazolyl blue tetrazolium bromide (MTT, #M2128),
and ketotifen fumarate salt (#K2628) were obtained
from Sigma. DNP-BSA (#A23018), Minimum Essen-

tial Medium (MEM, #41500-034), Fluo-4 AM (#F14201),
0.25% trypsin-EDTA (#25200), and the rat TNF-a
ELISA kit (#KRC3011) were obtained from Invitro-
gen. Fetal bovine serum (FBS) superior (#S0615) was
purchased from Biochrom AG (Germany).

Cell cultures

RBL-2H3 cells, obtained from the American Type
Culture Collection (ATCC, #CRL-2256), were cul-
tured in MEM with 15% heat-inactivated FBS at 37°C
in a humidified atmosphere of 5% CO2 and subcul-
tured after trypsinization (0.25% trypsin-EDTA).

MTT assay

Cells grown in 96-well plates (1.8 × 105 cells/well)
were incubated for 44 h with and without emodin so-
lution at final concentrations of 3.12, 6.25, 12.5, 25,
50, and 100 µM. Control samples were cultured with
0.1% dimethyl sulfoxide (DMSO) culture medium.
Twenty microliters of MTT (5 mg/ml) solution was
added to each well, and the plates were incubated for
another 4 h at 37°C. The medium was removed, and
150 µl DMSO was added to each well to solubilize
formazan crystals formed in viable cells before meas-
uring absorbance at 492 nm (TECAN Genios). The
density of formazan formed in control (medium
alone) cells was taken as 100% viability.

b-Hexosaminidase (b-HEX) secretion assay

The amount of b-HEX, a marker of degranulation of
RBL-2H3 cells, released into the medium was deter-
mined as described previously [13, 14]. Briefly,
RBL-2H3 cells grown in 24-well plates (2.5 × 105

cells/well) were sensitized with 0.5 µg/ml of DNP-
specific IgE overnight. After two washes with Sira-
ganian buffer (119 mM NaCl, 5 mM KCl, 0.4 mM
MgCl2, 25 mM piperazine-N,N’-bis[2-ethanesulfonic
acid], and 40 mM NaOH, pH 7.2) supplemented with
5.6 mM D-glucose, 1 mM CaCl2, and 0.1% bovine se-
rum albumin (BSA; incubation buffer), cells were in-
cubated in 160 µl buffer for 10 min at 37°C. Cells
were then treated with 20 µl of test sample solution
for 10 min and stimulated with 20 µl DNP-BSA
(10 µg/ml) as an antigen for 10 min. The supernatant
(50 µl) was then transferred to a 96-well plate and in-
cubated with 50 µl substrate (1 mM 4-nitrophenyl-
N-acetyl-b-D-glucosaminide) in 0.1 M citrate buffer
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(pH 4.5) at 37°C for 1 h. The reaction was stopped by
adding 200 µl stop solution (0.1 M Na2CO3/NaHCO3,
pH 10.0). The absorbance was measured at 405 nm by
a microplate reader. The emodin test sample was dis-
solved in DMSO, and the solution was added to incu-
bation buffer (0.1% final DMSO concentration).

The inhibition (%) of b-HEX release by emodin
was calculated by the following equation, and IC50
values were determined graphically:

inhibition (%) = [1 – (T – B – N)/(C – N)] × 100%.

Control (C) was DNP-BSA (+), test sample (–); test
(T) was DNP-BSA (+), test sample (+); blank (B) was
DNP-BSA (–), test sample (+); and normal (N) was
DNP-BSA (–), test sample (–). Ketotifen fumarate salt
was used as a reference compound [15].

b-HEX activity assay

To clarify that the anti-allergic effects of these sam-
ples were attributable to the inhibition of b-HEX
release but not false positives from the inhibition of
b-HEX activity, RBL-2H3 cells were lysed by 0.1%
Triton X-100, and the lysate was centrifuged. The su-
pernatant was then diluted with Siraganian buffer and
adjusted to the equivalent enzyme activity of the
degranulation tested above. The enzyme solution
(45 µl) and test sample solution (5 µl) were trans-
ferred to a 96-well plate, and enzyme activity was ex-
amined as described above.

Measurement of TNF-a release

RBL-2H3 cells (2.8 × 106 cells/well) were sensitized
overnight with anti-DNP IgE as described above. The
cells were washed twice with 500 ml of MEM
containing 10% FCS, penicillin and streptomycin,
then exchanged with 320 ml of the fresh medium.
Forty microliters of the test sample solution and 40 µl
DNP-BSA (10 µg/ml final concentration) were added
to each well and incubated at 37°C for 4 h. The super-
natant (50 µl) was transferred to a 96-well ELISA
plate. The amount of TNF-a was determined using
ELISA kits according to the manufacturer’s instruc-
tion. The emodin test sample was dissolved in
DMSO, and the solution was added to MEM (0.1% fi-
nal DMSO concentration). The inhibition (%) of
TNF-a release by emodin was calculated by the fol-
lowing equation, and IC50 values were determined
graphically:

inhibition (%) = [1 – (T – N)/(C – N)] × 100%.

Control (C) was DNP-BSA (+), test sample (–); test
(T) was DNP-BSA (+), test sample (+); blank (B) was
DNP-BSA (–), test sample (+); and normal (N) was
DNP-BSA (–), test sample (–). Luteolin was used as
a reference compound [14].

Measurement of Ca2+ mobilization

Ca2+ mobilization in RBL-2H3 cells loaded with the
Ca2+-reactive fluorescent probe Fluo-4 AM was meas-
ured using a laser scanning confocal microscope
(Nikon ECL IPSE TE2000-E). RBL-2H3 cells in
a Confocal Dish (Coverglass Bottom Dish, Nikon)
were sensitized with 0.5 µg/ml anti-DNP IgE over-
night. After two washes with HBSS buffer (5.33 mM
KCl, 0.44 mM KH2PO4, 137.93 mM NaCl, 0.41 mM
MgSO4·7H2O, 5.56 mM D-glucose, 4.17 mM NaHCO3,
1.26 mM CaCl2, 0.49 mM MgCl2·6H2O, and 0.34 mM
Na2HPO4, pH 7.2), cells were incubated with 4.5 µM
Fluo-4 AM solution in HBSS buffer for 30 min at
37°C. Cells were then washed twice with HBSS
buffer to remove free Fluo-4 AM in solution and incu-
bated in HBSS buffer for 40 min. Ten microliters of
the test sample solution were added for incubation for
10 min. The fluorescence of the solution was moni-
tored before and after DNP-BSA stimulation (10 µg/
ml final concentration). Fluo-4-AM-loaded RBL-2H3
cells were excited at 488 nm, and the fluorescence
emission was observed at 515 nm. Fluorescence im-
ages were collected at 6 s intervals, and the changes in
Ca2+ levels were analyzed with NIS-Elements AR.

Statistical analysis

Values are expressed as the mean ± SEM. The IC50 val-
ues were calculated using Prism 5.0 software. Statisti-
cal significance was calculated by one-way analysis of
variance (ANOVA) using SPSS 15.0 software. Values
of p < 0.01 were considered statistically significant.

Results

Cytotoxicity effects of emodin on RBL-2H3 cells

The cytotoxic effects of emodin in RBL-2H3 cells were
measured by the MTT assay. As shown in Figure 1,
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emodin at concentrations of 3.12, 6.25, and 12.5 µM
did not significantly affect cell proliferation. The IC50
value was calculated as 22 µM. Thus, the concentra-
tions of emodin treated with RBL-2H3 cells ranged
from 3.12 to 25 µM during the subsequent experi-
ments.

emodin at concentrations of 3.12, 6.25, and 12.5 µM
did not significantly affect cell proliferation. The IC50
value was calculated as 22 µM. Thus, the concentra-
tions of emodin treated with RBL-2H3 cells ranged
from 3.12 to 25 µM during the subsequent experi-
ments.

Inhibitory effects on b-HEX release from

RBL-2H3 cells

b-HEX has been used as a marker of the degranulation
of RBL-2H3 cells. b-HEX release into the medium
was determined. The inhibitory effects of emodin on
antigen-induced degranulation in sensitized RBL-2H3
cells were examined. As shown in Figure 2A, emodin
inhibited the release of b-HEX from the cells stimu-
lated by DNP-BSA, with an IC50 value of 5.5 µM and
a significant difference between the test group and
control group (p < 0.01). Compared with the reference
compound, ketotifen (IC50 = 63.8 µM; Fig. 2B), our
results revealed that the activity of emodin (25 µM)
was similar to ketotifen (1,000 µM). Thus, the potent
inhibitory effect of emodin against b-HEX release
indicated that emodin may be a promising new anti-
histamine agent.

Inhibitory effects of b-HEX on enzyme activity

The effects of emodin on b-HEX were examined to
clarify whether its effects were attributable to the in-
hibition of enzyme activity or degranulation. Figure 3

shows that emodin had less inhibition against the en-
zyme activity of b-HEX at concentrations of 3.12,
6.25, 12.5, and 25 µM. The results demonstrated that
the anti-allergic effects of emodin were attributable to
the inhibition of b-HEX release and not a false posi-
tive from inhibition.

Inhibitory effects of emodin on TNF-a secretion

The inhibitory effects of emodin on TNF-a release
were measured in sensitized RBL-2H3 cells stimu-
lated by DNP-BSA using ELISA. The results demon-
strated that emodin exhibited marked activity against
TNF-a release, with an IC50 of 11.5 µM. Emodin at
concentrations of 12.5 and 25 µM significantly inhib-
ited TNF-a secretion with inhibition rates of 61.6
± 5.1% and 79.3 ± 6.6%, respectively, which were
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Fig. 1. Effects of emodin on the proliferation of RBL-2H3 cells. Values
represent the mean ± SEM (n = 8); * p < 0.01, significantly different
from control

Fig. 2. Effects of samples on b-HEX release from RBL-2H3 cells.
(A) treated with emodin. (B) treated with ketotifen fumarate salt. Each
value represents the mean ± SEM (n = 4); * p < 0.01, significantly dif-
ferent from control

A

B



significantly different from the control group (p <
0.01; Fig. 4). The suppressive effects of 25 µM
emodin approached the effects of the reference com-
pound luteolin at 30 µM.

Inhibitory effects of emodin on extracellular

Ca2+ influx

Increased levels of intracellular Ca2+ is important for
degranulation in the Ca2+-dependent pathway. There-
fore, the effects of emodin on extracellular Ca2+ influx
induced by DNP-BSA in sensitized RBL-2H3 cells
were analyzed using a laser scanning confocal micro-
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Fig. 3. Inhibitory effects of emodin on b-HEX enzyme activity. Each
value represents the mean ± SEM (n = 4)

Fig. 5. (A) Effects of emodin on changes in Ca2+ level induced by
DNP-BSA in RBL-2H3 cells. Fluorescence images were collected at
6 s intervals. Each value represents the mean ± SEM (n = 3). * p <
0.01, significantly different from control. (B, C) Confocal fluorescence
images of Fluo-4-AM-loaded RBL-2H3 cells: (B) stimulated with
DNP-BSA and (C) stimulated with DNP-BSA after pretreatment with
12.5 µM emodin. Sequential fluorescence images of antigen-
stimulated cells are shown on top, from left to right. Fluorescence
images were collected at 6 s intervals. DNP-BSA was added at the
time of the first frame

Fig. 4. Inhibitory effects of emodin on TNF-a secretion in RBL-2H3
cells. Each value represents the mean ± SEM (n = 2); * p < 0.01, sig-
nificantly different from control



scope with the Ca2+ probe Fluo-4 AM. In Figure 5A,
the results indicated that the level of intracellular Ca2+

in sensitized RBL-2H3 cells was stable (mean fluo-
rescence intensity = 191.0 ± 5.2) under normal condi-
tions. Typical examples of the confocal fluorescence
images of Fluo-4-AM-loaded RBL-2H3 cells are
shown in Figure 5B and C. Sequential Fluo-4 AM
fluorescence images in antigen-stimulated RBL-2H3
cells with and without emodin treatment are shown.
When sensitized cells were stimulated with 10 µg/ml
DNP-BSA, the intracellular Ca2+ level increased dra-
matically, which was approximately eight-fold greater
than responding in the normal group within the first
30 s (Fig. 5A, B). Pretreatment with 12.5 µM emodin
inhibited extracellular Ca2+ influx in sensitized
RBL-2H3 cells stimulated with DNP-BSA (Fig. 5A,
C). Significant differences (p < 0.01) were found in
the test group and normal group compared with the
control group.

Discussion

Type I hypersensitivity is an IgE-mediated immune re-
sponse, resulting in histamine secretion from mast cells
and blood basophils. Histamine release increases vas-
cular permeability and recruits inflammatory leuko-
cytes [5]. Recently, biphasic early-phase and late-phase
reactions have been reported in type I allergy. The
early-phase reaction of allergy occurs within minutes
after allergen exposure, whereas the late-phase reaction
occurs hours later and involves cytokine secretion,
such as TNF-a and IL-4. b-HEX is also stored in
secretory granules of mast cells and basophils and
released along with histamine when mast cells and ba-
sophils are activated. Therefore, this enzyme is com-
monly used as a marker for degranulation in RBL-2H3
cells [1]. This convenient assay can be used for moni-
toring the capacity of potential new drugs to block
mast cell activation and degranulation [4].

A previous study reported that emodin had antiin-
flammatory and immunosuppressive effects [7, 10]
The present study found that emodin markedly
decreased b-HEX release (Fig. 2A) and displayed
stronger inhibition of b-HEX release (IC50 = 5.5 µM)
than ketotifen fumarate salt (IC50 = 63.8 µM). The
significant inhibitory activity of emodin against
b-HEX production indicates that emodin may be
a promising new anti-histamine agent.

In RBL-2H3 cells, tyrosine kinase Syk recruited by
aggregated FceRI phosphorylates phospholipase Cg

(PLCg), which leads to the generation of inositol
1,4,5-triphosphate (IP3). IP3 causes the release of Ca2+

from intracellular Ca2+ stores and activates Ca2+ influx
via Ca2+ release-activated Ca2+ channels (CRAC) to re-
plenish the depleted Ca2+ stores. Ca2+ influx is an im-
portant event for degranulation and cytokine produc-
tion [3, 13]. The increase in Ca2+ influx is followed by
the degranulation of mast cells and production of in-
flammatory mediators, such as prostaglandins and
arachidonic acid [6, 10]. In this study, we found that
pretreatment with 12.5 µM emodin markedly inhib-
ited the influx of extracellular Ca2+ in sensitized
RBL-2H3 cells stimulated with DNP-BSA, although
pretreatment with 3.12 and 6.25 µM emodin had
a less extended effect or unstable effect. These find-
ings suggest that 12.5 µM emodin influences degra-
nulation via the Ca2+-dependent pathway because it
could inhibit extracellular Ca2+ influx in sensitized
RBL-2H3 cells stimulated with DNP-BSA.

The late-phase reaction occurs within 4–6 h after
the early-phase reaction in type I allergy. Mediators
such as cytokines (TNF-a, IL-4, etc.) from the cells
are involved in the late phase. TNF-a is an important
pro-inflammatory cytokine that plays a critical role in
late-phase hypersensitivity reactions. TNF-a is mainly
produced by activated macrophages and T cells in re-
sponse to infection, although it is also formed and se-
creted by mast cells in response to Ig-E challenge.
Previous studies have demonstrated that emodin could
suppress the release of cytokines, such as TNF-a and
interleukin-6 (IL-6), in severe acute pancreatitis in rats
[11, 23]. Therefore, we examined whether emodin
suppressed TNF-a secretion in antigen-stimulated
RBL-2H3 cells. Emodin exhibited concentration-
dependent effects against TNF-a, with an IC50 of
11.5 µM (Fig. 4), indicating that emodin is also effec-
tive against late-phase reactions.

In summary, emodin suppressed degranulation and
cytokine production in antigen-induced activation of
sensitized RBL-2H3 cells. Our results indicate that
the mechanism of action of emodin on degranulation
(the early-phase reaction) is somewhat similar to its
effects on TNF-a release (the late-phase reaction),
perhaps by increasing the stability of the cell mem-
brane. Although emodin inhibited extracellular Ca2+

influx, future experiments are necessary to elucidate
the effects of emodin-induced blockade of extracellu-
lar Ca2+ influx pathways on signal transduction.
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