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Abstract:

Background: Animal models of visceral pain have gained much attention as an important tool to elucidate the possible mechanisms

underlying functional gastrointestinal (GI) disorders. Here we report the development of a new, minimally invasive behavioral

model of abdominal pain induced by ip administration of neostigmine in mice.

Methods: Spontaneous behavioral responses evoked by ip injection of neostigmine were compared to pain-related behaviors

induced by acetic acid solution (ip), mustard oil (MO) and capsaicin (both ic). Pain behaviors were quantified by assessment of

defined postures (licking of the abdomen, stretching, squashing of the abdomen and abdominal contractions). Neuronal activation of

spinal cord was measured by determining the number of c-Fos-positive cells.

Results: Neostigmine (2.5 µg/kg, ip), acetic acid solution (ip), MO and capsaicin (both ic) induced spontaneous behavioral

responses in mice, which were blocked by morphine (3 mg/kg, ip), suggesting the involvement of pain signaling pathways. Injection

of neostigmine enhanced c-Fos expression in spinal cord neurons.

Conclusion: The neostigmine model represents a new minimally invasive mouse model to study visceral pain. Based on the neu-

ronal activation pattern in the spinal cord we suggest that this model may be used to study abdominal pain signaling pathways in the

GI tract.
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Introduction

Visceral pain is a frequent symptom in functional gas-

trointestinal (GI) disorders, like irritable bowel syn-

drome (IBS) and functional dyspepsia [12]. Visceral

pain is diffuse and poorly localized, mainly due to the

structure and physiology of visceral nociceptive path-

ways, e.g., a relatively low number of afferent fibers

[2, 6, 7, 10, 12]. Cellular and molecular mechanisms

of visceral pain signaling, as well as its perception

and physiological processing, are clearly distinct from

those involved in somatic pain, and need to be studied

separately.

Characterization of the mechanisms underlying

visceral nociception is of both, scientific and clinical

importance. Studies in humans are mainly based on

brain imaging techniques to map the sites activated in

clinically evoked or pathophysiological visceral pain

[41]. In animals, the most direct approach is the elec-

trophysiological recording of the primary afferent or

second-order neurons [12, 18].

Mimicking GI disorders and visceral pain in ani-

mals is difficult and therefore only a few experimental

models have been validated. The main limitation is

the assessment and measurement of pain responses in

animals. Electromyography is a common technique

used to characterize abdominal muscle contractions in

response to colorectal distension (CRD) [34, 36], but

the CRD-based model is invasive, technically chal-

lenging and time consuming. Recently, models based

on the observation of animal behavior and scoring of

specific pain-related responses have gained much

attention [16, 24]. These models are less invasive,

require less animal preparation (e.g., surgical inter-

vention) prior to the assessment of nociception, and

allow studies in freely moving animals. However,

based on comparative studies, behavioral models

seem less sensitive. Both mice and rats are used [18,

19, 37]; however, mouse models of visceral pain have

become more popular due to the development of

transgenic strains and thus bigger scientific impact.

Several factors need to be considered prior to vali-

dation of a behavioral animal model of visceral pain.

A test can be considered viscero-specific only when

the substances used produce strong smooth muscle

contractions sufficient to excite visceral receptors

(e.g., acetylcholine; ACh or hypertonic saline) [13,

17, 24, 26] or mild inflammation (e.g., mustard oil;

MO) [26]. However, the response should last long

enough to be of clinical significance, which is not the

case for behaviors evoked by intraperitoneally (ip)-

injected ACh [26]. Furthermore, high level of inva-

siveness has to be considered as a major drawback for

the MO-based model, where MO is administered in-

tracolonically (ic).

In an effort to develop a minimally invasive

method of assessment of visceral nociception, we de-

scribe here a new model of pain based on the sponta-

neous behavioral responses following ip administra-

tion of a reversible acetylcholinesterase inhibitor,

neostigmine, in mice. The pain responses to neostig-

mine were compared to behaviors evoked by acetic

acid solution (ip), MO and capsaicin (both ic), nox-

ious stimuli used in well-established mouse models of

visceral pain [16, 23, 24]. Furthermore, the effects of

morphine on pain-related behaviors evoked by

neostigmine, acetic acid solution, MO and capsaicin

were examined. To further evaluate the effects of the

applied irritants on the nociceptor activation in the

central nervous system, quantification of c-Fos posi-

tive neurons in the spinal cord was performed.

Materials and Methods

Animals

Male Swiss albino mice (CD1, Charles River,

Canada), weighing 28–30 g were housed at a constant

temperature (22°C) and maintained under a 12-h

light/dark cycle in sawdust-lined plastic cages with

free access to laboratory chow and tap water. The

animal use for these studies was approved by the

University of Calgary Animal Care Committee and

the experiments were performed in accordance with

institutional animal care guidelines that follow the

guidelines established by the Canadian Council on

Animal Care.

All efforts were made to minimize animal suffering

and to reduce the number of animals used.

Drugs

All drugs and reagents, unless otherwise stated, were

purchased from Sigma-Aldrich (Oakville, ON, Canada).

Capsaicin was purchased from Tocris Bioscience

(Ellisville, MO, USA).
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Measurement of pain-related behavioral

responses

Mice were randomly assigned to experimental groups

(n = 6–10). The animals were habituated to a raised

wire mesh (5 × 5 mm apertures) under a clear plastic

box (20 × 20 × 15 cm) for 20 min one day before the

assay and again 20 min prior to the experiment.

Neostigmine (1, 2.5 and 10 µg/kg) or vehicle was

administered ip and the pain-related behaviors were

recorded on a videotape for 20 min for later analysis

by a separate observer blinded for experimental con-

ditions. Pain-related behaviors: 1) licking of the abdo-

men in the absence of other grooming behavior, 2)

stretching the abdomen, 3) squashing of lower abdo-

men against the floor, and 4) contracting the abdomi-

nal wall and adopting “arched” posture (abdominal

retractions) were each counted as 1, as characterized

previously [24].

The writhing test was performed as described ear-

lier [23]. Acetic acid solution (0.25, 0.75 and 1.5%,

vol/vol in 0.9% NaCl, 10 ml/kg) was administered ip.

Mice were then placed in individual cages and the to-

tal number of writhes was counted 5 min after acetic

acid injection during four periods of 5 min each.

Behavioral responses to ic mustard oil (MO) and ic

capsaicin were determined based on the methods de-

scribed by Laird et al. [24]. For the assessment of the

MO-induced pain behaviors, 50 µl of MO (0.25 and

1% v/v in 70% ethanol) or vehicle was administered

ic under isoflurane anesthesia. Vaseline was applied

to the perianal area to avoid stimulation of perianal

somatic areas. After 5 min of recovery, spontaneous

behaviors were counted for 20 min. Capsaicin-

induced pain behaviors were initiated by ic admini-

stration of 50 µl of capsaicin solution (0.1 and 0.3%

w/v in 10% ethanol – 10% Tween 80 – 80% saline)

under isoflurane anesthesia and recorded as described

above.

Effect of morphine on pain-related behavioral

responses

In separate groups the animals were pre-treated with

morphine (3 mg/kg in saline, ip) 20 min prior to the

administration of the irritant. The behavioral re-

sponses to neostigmine (ip), acetic acid solution (ip),

MO and capsaicin (both ic) were assessed as de-

scribed above.

c-Fos staining

Immediately after the behavioral tests, mice were

anesthetized and transcardially perfused with 10%

paraformaldehyde. Spinal cords (lumbar to sacral

region) were fixed overnight at 4°C, then placed in

30% sucrose for 24 h at 4°C, and finally embedded in

OCT (Sakura Finetek, Torrance, CA, USA), and sec-

tioned at 20 µm. Sections were washed in phosphate-

buffered saline (PBS) containing 3% serum and 0.3%

Triton X-100, and incubated with a primary c-Fos

antibody (Anti-c-Fos (Ab-5) (4-17) Rabbit pAb,

1:10,000 , EMD Millipore, Darmstadt, Germany) for

48 h at 4°C. Sections were washed with PBS and in-

cubated with a secondary antibody, Alexa Fluor 555

(1:1,000; Molecular Probes, Eugene, OR, USA) at

room temperature for 2 h. Washed sections were then

mounted and imaged using a Zeiss LSM-510 META

confocal inverted microscope (Carl Zeiss, Jena, Ger-

many) equipped with 20× objective.

Statistics

Statistical analyses were performed using Prism 5.0

(GraphPad Software Inc., La Jolla, CA, USA).

The data are expressed as the means ± SEM. Data

were analyzed using one-way analysis of variance

(ANOVA) followed by Newman-Keuls post-hoc test;

p values < 0.05 were considered statistically signifi-

cant.

Results

Spontaneous pain-related behaviors

Administration of neostigmine (1, 2.5 and 10 µg/kg,

ip) evoked pain-related behaviors, which were charac-

terized by abdominal licking, abdominal retractions,

squashing the abdomen against the floor and stretch-

ing the whole body (Fig. 1A). The behaviors counted

as pain-related were distinct from the grooming be-

haviors, which were observed in non-treated animals.

The total number of spontaneous behaviors in

neostigmine-treated mice was dose-dependent and

significantly higher than that in vehicle-injected ani-

mals (Fig. 1A).

Abdominal licking (approx. 80–90% of all behav-

iors) and, to a lesser extent, abdominal retractions
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Fig. 1. Total number of behavioral pain responses (stretching, licking and squashing of abdomen, abdominal retractions) evoked by ip injec-
tion of neostigmine (A), ip injection of acetic acid solution (B), ic administration of MO (mustard oil) (C) and ic administration of capsaicin (D).
Responses were determined in 5-min episodes for 20 min. Data represent the mean ± SEM for n = 6�10. * p < 0.05, ** p < 0.01, *** p < 0.001, as
compared to vehicle-treated animals



were the most frequently observed, while stretching

or abdominal constrictions were the least observed

behaviors. The time course showed that the maximum

response was observed 5 to 15 min after injection,

with the latency to first behavior greater than 1 min

(Fig. 1A). The total number of spontaneous behaviors

evoked by the highest dose of neostigmine tested

(10 µg/kg, ip) was not significantly different from that

observed at 2.5 µg/kg, ip (20.3 ± 2.3 and 22.7 ± 1.9,

respectively). Therefore, a dose of 2.5 µg/kg (ip) was

used in subsequent experiments.

The ip injection of acetic acid solution (0.25, 0.75

and 1.5%, v/v in 0.9% NaCl, 10 ml/kg) elicited pain-

related response in mice (Fig. 1B). The total number of

pain-evoked behaviors induced by acetic acid solution

at a dose of 0.75%, which was selected for further stud-

ies, was 21.7 ± 3.7. The time course of the experiments

demonstrated a non-significant decrease in the number

of behavioral responses after acetic acid solution treat-

ment in the last 5 min-period of the test (Fig. 1B).

MO and capsaicin (both ic) produced significant

pain-related behavioral response in mice, compared to

vehicle-treated animals (Fig. 1C and D). The most pre-

dominant behavior (approx. 80–95% of all behaviors)

was abdominal licking. The time course of the experi-

ments showed that the total number of responses was

similar throughout the test for both MO and capsaicin

(Fig. 1C and D) and was less transient than the neostig-

mine model. For comparison with previously published

data, the doses of 1% (ic) for MO and 0.3% (ic) for

capsaicin were used in further assays.

Effect of morphine on spontaneous pain-related

behaviors

Pre-treatment with morphine (3 mg/kg, ip, 20 min

before the assay) significantly decreased the number

of spontaneous behaviors evoked by neostigmine

(2.5 µg/kg, ip) (Fig. 2A), suggesting that they are

pain-related [24]. The ip administration of morphine

also blocked pain-related responses evoked by acetic
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Fig. 2. Effect of morphine (3 mg/kg, ip, 20 min pre-treatment) on pain-related behavioral response in mice evoked by (A) neostigmine
(2.5 µg/kg, ip), (B) acetic acid solution (0.75%, ip), (C) MO � mustard oil (1%, ic) and (D) capsaicin (0.3%, ic). Data represent the mean ± SEM
for n = 6�10; ### p < 0.001, as compared to respective controls (animals injected ip with saline)



acid solution (0.75%, ip), MO (1%, ic) and capsaicin

(0.3%, ic) (Fig. 2B–D, respectively). When given

alone, morphine had no effect on locomotor activity

and did not alter the spontaneous behavior of the ob-

served animals.

c-Fos staining and neuronal response

The number of c-Fos positive cells in sections (lami-

nae I–X) from upper (L2–L4) and lower (L5–S1) spi-

nal cord segments was determined to characterize the

neuronal activation by nociceptive input received

from the colon [14, 16, 32, 44]. As shown in Figure 3,

the ip injection of neostigmine (2.5 µg/kg) in mice

significantly increased the number of c-Fos positive

cells in sections from upper (31.5 ± 2.0 neurons per

section) and lower (22.2 ± 1.19 neurons per section)

spinal cord segments compared with non-treated con-

trol animals (6.9 ± 0.9 and 6.3 ± 0.7 neurons per sec-

tion, respectively).
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Fig. 3. Intraperitoneal administration of neostigmine enhances c-Fos expression in spinal cord neurons. (A) Confocal images of spinal cord
sections (L5�S1) in control and neostigmine (2.5 µg/kg, ip) treated animals. Scale bar: 50 µm. (B) Quantification (the mean ± SEM) of c-Fos
positive neurons from seven sections taken in the lumbar spinal cord (L2�L4) following injection of saline and neostigmine (2.5 µg/kg, ip) (n = 6
mice per group). (C) Quantification (the mean ± SEM) of c-Fos positive neurons from seven sections taken in the lumbosacral spinal cord
(L5�S1) following injection of saline and neostigmine (2.5 µg/kg, ip) (n = 6 mice per group). Values are mean number of the total section (Lami-
nae I�X) ± SEM from 7 sections per group (* p < 0.05, ANOVA)



Discussion

Here we report a new behavioral model of abdominal

pain evoked by ip injection of a reversible acetylcho-

linesterase inhibitor, neostigmine, in mice.

Functional GI disorders and many diseases of inter-

nal organs induce visceral pain sensitization. Distin-

guishing visceral from somatic pain is difficult due to

structural overlap of afferent fibers and common sig-

naling patterns, including peripheral and central sensi-

tization associated with enhanced neuronal excitabil-

ity [9, 11, 40]. According to Laird et al. [24] a pain

test is considered viscero-specific when substances

that produce strong contractions of visceral smooth

muscle are used (e.g., ACh or hypertonic saline) [13,

42]. Most of the longer-lasting irritants applied ic in-

duce inflammation and – since peritoneum becomes

involved – the response is regarded as mixed visceral

and somatic [26].

In our newly developed model, we employed

neostigmine, a reversible acetylcholinesterase inhibi-

tor, which increases the levels of endogenous ACh,

previously shown to excite visceral nociceptors [42],

but does not influence macroscopic mucosal damage,

adhesions or diarrhoea or induce colitis [33]. The ac-

tion of the irritant lasts long enough to be assessed in

a standardized fashion. In addition, contrary to the

methods based on the ic instillation, there is no risk of

irritation of the perianial area, which also limits over-

lap with somatic pain pathways. In addition, the rela-

tively short lasting effect of neostigmine, compared to

ic administered irritants, is more favorable in terms of

animal care issues.

Several lines of evidence imply that the newly de-

veloped model can be used to study pain signaling

pathways in the abdomen. As shown by the c-Fos

staining, which is a useful marker of neuronal activity,

the ip administration of neostigmine activated neu-

rons in the superficial laminae in upper and lower spi-

nal cord. Previous studies demonstrated that the neu-

ronal activation and the increase in c-Fos expression

in these segments requires nociceptive input from the

colon and rectum [18, 22, 29, 32, 38]. Taken together,

our data suggest that the new model can be used to

study abdominal pain pathways.

This is further supported by the characteristics of

pain behaviors observed after neostigmine injection.

Abdominal stretching or writhing, a spontaneous pain

reaction typical of the ip administration of acetic acid

solution, was a marginally observed posture. Instead,

abdominal licking and – to a lesser extent – abdominal

retractions were predominant. Similar differences in be-

havioral response profiles between the writhing test and

colorectal abdominal pain models in rats and mice were

shown earlier ([24] and citations therein: [28, 31]).

The applicable value of our newly developed

model has been evidenced in experiments with mor-

phine, a classical opiate analgesic commonly used to

relieve acute and chronic pain. At the dose used, mor-

phine decreased the number of neostigmine-evoked

behavioral responses, but did not influence locomotor

activity or alter spontaneous behavior of the animals,

suggesting anesthetization, but not sedation. In 1990,

Presley et al. [38] showed that formalin injection in-

creased cFos immunoreactivity in laminae I and II of

the dorsal horn. Morphine inhibited the formalin-

evoked cFos immunoreactivity and suppressed the

pain-induced behavioral response, suggesting an anal-

gesic effect at the spinal level. Numerous other stud-

ies have emphasized the role and distribution of opi-

ates and opioid receptors in the superficial dorsal horn

of the spinal cord [1, 27] and opioid peptides have

been found in high concentration in these regions [15,

20, 21]. It is noteworthy that the superficial dorsal

horn is densely innervated by the raphe-spinal axons

that are suggested to mediate opiate-activated de-

scending bulbospinal controls [3–5]. Therefore, based

on previous findings and our results, we believe that

morphine mediated an analgesic effect by dampening

the neuronal activity of nociceptive circuit in the dor-

sal horn of the spinal cord.

The correct assessment of visceral pain in experi-

mental studies is hindered by a more difficult access

to visceral tissues, compared to superficial structures,

and the requirement of surgical intervention in most

of the methods ([24], for review see: [19, 37]). Pres-

ently, one of the most common techniques used to as-

sess visceral nociception is based on the electromyog-

raphic recording of the abdominal muscle contrac-

tions in response to mechanical activation of visceral

afferents after graded colorectal distension (CRD)

[34, 36]. This method has been successfully used in

both rats [35, 36, 39, 43] and mice [25, 31]. In mice,

however, it is particularly challenging and only short

lasting distensions allow comparable results [30].

Nevertheless, this model is mostly used for its high

sensitivity, being able to detect subtle changes in vis-

ceral nociception. For instance, this model was used

to reproduce in mice visceral hypersensitivity induced
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by culture supernatants from IBS patient biopsies [8],

while this hypersensitivity was not detectable by be-

havioral measures. In contrast to the electromyog-

raphic recording, the neostigmine-based assay re-

quires no prior surgery, thus eliminating the need for

recovery and maximizing the number of animals

which can be used for a successful experiment. Fur-

thermore, unlike invasive ic administration-based as-

says, a longer survival time after visceral stimulation

decreases dramatically the invasiveness category and

eliminates ethical issues.

Another important factor that makes our technique an

attractive alternative to currently used mouse models is

that the behavioral response can be graded, as it is pro-

portional to the intensity (dose) of the stimuli. There is a

similar correlation between the distending pressure and

the electromyographic signal [34, 36], which is not the

case with the techniques based on the ic instillation of ir-

ritant solutions to induce visceral pain.

Conclusions

Here we report a new behavioral model to study the

abdominal pain response in mice, which is minimally

invasive, dose-dependent, and reproducible. Consid-

ering all these advantages, it might become an attrac-

tive alternative to currently used animal models, espe-

cially when testing compounds intended to target and

reduce abdominal pain. In our newly described

model, the spinal activation suggests that the nocicep-

tive input originates in the colorectum and thus may

be helpful to study abdominal signaling pathways, in-

cluding visceral pain pathways.
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