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Abstract:

The animal models are pivotal for understanding the characteristics of acute renal failure (ARF) and development of effective ther-

apy for its optimal management. Since the etiology for induction of renal failure is multifold, therefore, a large number of animal

models have been developed to mimic the clinical conditions of renal failure. Glycerol-induced renal failure closely mimics the

rhabdomyolysis; ischemia-reperfusion-induced ARF simulate the hemodynamic changes-induced changes in renal functioning;

drug-induced such as gentamicin, cisplatin, NSAID, ifosfamide-induced ARF mimics the renal failure due to clinical administration

of respective drugs; uranium, potassium dichromate-induced ARF mimics the occupational hazard; S-(1,2-dichlorovinyl)-L-

cysteine-induced ARF simulate contaminated water-induced renal dysfunction; sepsis-induced ARF mimics the infection-induced

renal failure and radiocontrast-induced ARF mimics renal failure in patients during use of radiocontrast media at the time of cardiac

catheterization. Since each animal model has been created with specific methodology, therefore, it is essential to describe the model

in detail and consequently interpret the results in the context of a specific model.
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Abbreviations: ARF – acute renal failure, ATN – acute tubular

necrosis, ATSDR – Agency of Toxic Substances and Disease

Registry, Bcl-xL – B-cell lymphoma-extra large, BUN – blood

urea nitrogen, CAA – chloroacetaldehyde, Cisplatin – cis-

diaminedichloroplatinum(II), CLP – cecal ligation and punc-

ture, CM and/or CT – contrast media, CYP – cytochrome-P,

DCVC – S-1,2-dichlorovinyl-L-cysteine, DNA – deoxyribonu-

cleic acids, E. coli – Escherichia coli, FA – folic acid, Fe–NTA

– ferric-nitrilotriacetate, GFR – glomerular filtration rate, GSH

– reduced glutathione, HgCl2 – mercuric chloride, im – intra-

muscular, ip – intraperitoneal, iv – intravenous, I/R – ischemia

and reperfusion, IFO – ifosfamide, LPS – lipopolysaccharide,

MPTP – mitochondrial permeability transition pore, NaCl – so-

dium chloride, NADPH oxidase – nicotinamide adenine dinu-

cleotide phosphate-oxidase, NSAIDs – non-steroidal anti-

inflammatory drugs, NTA – nitrilotriacetic acid, po – per oral,

ROS – reactive oxygen species, sc – subcutaneous, SHR –

spontaneous hypertensive rats, TCE – trichloroethylene,

TNF-a – tumor necrosis factor-a, UN – uranyl nitrate

Introduction

Acute renal failure (ARF) is characterized by a rapid,

potentially reversible, decline in renal function in-

cluding rapid fall in glomerular filtration rate (GFR)

and retention of nitrogenous waste products over a pe-

riod of hours or days. The mortality rate of patients

with ARF has remained 25–70% despite the use of

various pharmacologic agents. Therefore, it continues

to be a frequent threatening complication following

trauma, complex surgical procedures, and in patients

hospitalized in intensive care units [73]. ARF in-

creases the risk of death in patients after thoracoab-

dominal aortic surgery, bone marrow transplantation,

amphotericin B therapy, in patients with liver cirrho-

sis and in cardiac surgery [30]. The various factors
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Tab. 1. List of animal models for ARF in an experimental laboratory

S. No. Animal models Dose, route and duration References

1 Glycerol · Single dose 8–10 ml/kg, im is used for induction of ARF
· Single dose 8 mg/kg, im is more commonly used for the induction of ARF

[61, 107, 127]
[107]

2 Ischemia
-reperfusion

· Clamping of both renal artery for 60 min (I) and 24 h (R).
· Left renal artery clamping for 45 min (I) and 24 h (R)
· Right renal artery and vein for 60 min (I) and 60 min (R)
· Left renal artery and vein for 45 min (I) and 2 week (R)
· Infra-renal aortic 150 min (I) and 180 min (R)
· Left renal pedicle for 40 min (I) and 24 h (R)
· 45 min ischemia followed by 24 h reperfusion is more commonly used for

the induction of ARF

[15, 19, 36, 49,80, 87, 93,
140]

[36, 80]

3 Gentamicin · Dose range 40–200 mg/kg for 4–10 days
· Dose 100 mg/kg, ip for 5 days is more commonly used for the induction of ARF

[21, 44, 99, 128, 137]
[44]

4 Cisplatin · Dose range 5–40 mg/kg, ip single dose
· Dose 100 mg/kg is more commonly used for the induction of ARF

[6, 7, 61, 74, 76, 79, 81, 83,
89, 104]

[89]

5 Radiocontrast
media

Diatrizoate
· Single dose range 2–10 ml/kg, iv
· Dose 7 and 10 ml/kg, iv is more commonly used for the induction of ARF

[33, 45, 50, 141, 144]
[33, 141]

Ioxaglate
· Dose 1 ml/min, intra aortic injection for 3 min is used for the induction of ARF [122]

Iohexol
· Dose range 1.5–3 g of iodine/kg, ip injection is used for the induction of ARF [75]

Sodium iothalamate
· Dose 6 ml/kg intra aortic administration for 2–3 min is used for the induction of ARF [3]

6 NSAIDs Acetaminophen
· Dose range 375–3000 mg/kg, ip single dose.
· Dose 750 mg/kg, po and 600 mg/kg, ip single dose is more commonly used for the
induction of ARF.

[2, 27, 29, 69, 78, 100]
[78, 100]

Diclofenac sodium
· Dose 15 mg/kg, ip injection for 3 day is used for the induction of ARF [42]

7 Osmotic nephrosis · Single dose 4–27% w/v sucrose, ip is used for the induction of ARF [55, 144]

8 Ifosfamide · Dose range 50–1100 mg/kg, ip 1–5 days
· Dose 550 mg/kg, ip single dose is more commonly used for the induction of ARF

[14, 145]
[145]

9 Uranium Uranyl nitrate
· Dose range 0.5–20 mg/kg is used for the induction of ARF
· Single dose 15 and 25 mg/kg, iv is more commonly used for the induction of ARF

[13, 32, 39, 40, 48, 77, 101, 121]
[13]

Uranyl acetate
· Single dose 5 mg/kg, sc is used for the induction of ARF

[39, 40]

10 Mercuric chloride · Dose range 1–10 mg/kg, is used for the induction of ARF
· Single dose 6 mg/kg, ip and 10 mg/kg, sc are more commonly used model for

the induction of ARF

[4, 12, 46, 106, 143, 147]

[4, 46]

11 Potassium
dichromate

· Single dose 15 mg/kg, sc is used for the induction of ARF [9, 68]

12 Folic acid · Single dose 250 mg/kg, iv is used for the induction of ARF [129]

13 Ferric-
nitrilotriacetate

· Dose range 1–15 mg of iron/kg, ip is used for the induction of ARF
· Dose 12 mg/kg, po and 15 mg/kg, ip is more commonly used for the induction of ARF

[54, 58, 97, 125]
[125]

14 S-(1,2-dichlorovinyl)-
L-cysteine (DCVC)

· Dose range 5–30 mg/kg, ip is used for the induction of ARF
· Single dose 25 mg/kg, ip is more commonly used for the induction of ARF

[37, 102, 136]
[37]

15 Sepsis · Ligation of cecum and and punctured three times for the induction of ARF
· Administration of LPS 2.5–15 mg/kg is used for the induction of ARF
· Single dose 15 mg/kg, ip is more commonly used for the induction of ARF

[139]
[63, 64, 96, 105]

[63]

16 Bipyridyls · Dose range 108–680 mg/kg of paraquat is used for the induction of ARF
· Dose range 7.5–680 µmol/kg of diquat is used for the induction of ARF

[82]
[82, 103]



that predispose to ARF are hemodynamic instability,

major vascular surgery, hypovolemia, atherosclerosis,

diuretic therapy, preoperative starvation, congestive

cardiac failure, peritonitis, ileus obstruction, biliary

surgery, jaundice, diabetes mellitus, hypoxia, ische-

mia and reperfusion (I/R), pre-eclampsia/eclampsia,

sepsis, major burns and pancreatitis [62].

ARF is classically divided into pre-renal, renal (in-

trinsic) and post-renal failure. Pre-renal ARF is a conse-

quence of decreased renal perfusion (due to hypovo-

lemia/shock or ischemia), which leads to a reduction in

GFR. Intrinsic renal failure occurs when there is a dam-

age to the structures of the nephron such as the glom-

eruli, tubules, vessels, or interstitium. The major cause

of intrinsic ARF is acute tubular necrosis (ATN) that re-

sults from ischemic or nephrotoxic injury. Pre-renal

ARF and ischemic ATN may occur as a continuum of

the same pathophysiological process, and together ac-

count for 75% of the causes of ARF [73]. Post-renal

ARF follows obstruction of the urinary collection sys-

tem with an increase in pressure within the renal collect-

ing systems resulting in reduced GFR and renal failure.

In clinical setup, the etiology of ARF is multifold and

complex. Rhabdomyolysis is the syndrome character-

ized by breakdown of striated muscle with massive re-

lease of myoglobulin into the extracellular fluid and cir-

culation leading to filtration of myoglobulin to renal tu-

bules [126]. Rhabdomyolysis provokes ATN because

myoglobin forms obstructing tubular casts and myoglo-

bin also leads to intra-renal vasoconstriction due to nitric

oxide scavenging and through hypovolemia. I/R-

induced renal injury is also very important cause of ARF

in clinical setup. Antibiotics such as gentamicin [92],

anticancer agents such as cisplatin [61, 89, 94] and ifos-

famide [145], radio contrast media, non-steroidal anti-

inflammatory drugs (NSAIDS), osmotic changes, die-

tary or endogenous agents such as folic acid are the im-

portant causes of ARF [42, 51, 75, 129]. In order to un-

derstand the pathophysiology of onset of ARF in these

different conditions and to explore the drug therapeutics,

researchers have developed different animal models of

ARF (Tab. 1). The present review discusses these differ-

ent animal models of acute renal failure.

Animal models of ARF

Glycerol-induced ARF

Glycerol-induced ARF is characterized by myo-

globinuria, tubular necrosis [66] and enhanced renal

vasoconstriction. The pathogenic mechanisms in-

volved in glycerol-induced renal failure include

ischemic injury, tubular nephrotoxicity caused by

myoglobin, and the renal actions of cytokines re-

leased after rhabdomylosis [34, 135]. The large num-

bers of disorders known to cause rhabdomyolysis in-

clude intrinsic muscle dysfunction (including trauma,

burns, intrinsic muscle disease, and excessive physical

exertion), metabolic disorders, hypoxia, drugs, toxins,

infections, temperature extremes and idiopathic disor-

ders [126]. Complications associated with rhabdomy-

olysis include disseminated intravascular coagulation,

hyperkalemia and other metabolic imbalances, ARF

and acute cardiomyopathy. In general, about 10–40%

of cases with rhabdomyolysis develop ARF and it ac-

counts for 2–15% of all cases of ARF. The model for

studying this form of ARF is obtained in the rat by in-

tramuscular injection of glycerol [119]. There is en-

hanced generation of hydrogen peroxide in renal cor-

tex in rats with glycerol-induced acute renal failure.

A standard method of inducing renal failure is by

intramuscular administration of 50% glycerol, v/v

(8 ml/kg, im) [108]. The required amount of glycerol

is administered as a deep im injection equally distrib-

uted to both hind legs. Rats are deprived of food and

water for 24 h before glycerol administration after

which they were sacrificed for kidney function

evaluation [107]. Also, Vlahovic et al. [127] induced

ARF by administration of glycerol (50% v/v in saline)

im at a dose of 10 ml/kg. Injection volumes were di-

vided equally between two hind limbs. The rats were

dehydrated 18 h prior induction of myoglobinuric re-

nal injury and sacrificed 48 h after injection of hyper-

tonic glycerol without any restriction of diet or water

[127]. Intramuscular injection of glycerol in the rabbit

induces a model of ARF at a dose of 10 mg/kg that re-

sembles the ARF caused by massive release of myo-

globin in crush syndrome in humans [112, 123]. An

intramuscular administration of single dose of 8 ml/kg

of glycerol is the most appropriate animal model that

clinically mimics the rhabdomyolysis-induced renal

failure in humans.

Ischemia-reperfusion-induced ARF

Under the circumstances such as ischemia and neph-

rotoxins, ARF is characterized by “acute tubular ne-

crosis” with flattened epithelia and tubular dilation

and cast formation. In these conditions, the tubular

damage and altered glomerular hemodynamics may
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coexist or even lead to each other [57]. Although the

detailed cellular and molecular mechanisms of cell in-

jury and the subsequent recovery are not entirely

known, yet, data from the previous studies have indi-

cated that ARF may result from the necrosis and

apoptosis of renal epithelial cells [35, 117, 131]. In

the kidney, ischemia reperfusion injury is associated

with cell death of tubular epithelial cells, localized in

the stripe between the cortex and medulla; via necro-

sis or apoptosis that in-turn depends on the severity of

the ischemic insult.

Experimentally, ARF is induced by clamping the

left renal artery for 1 h followed by reperfusion in

anesthetized uninephrectomized dogs and renal fail-

ure is noted to develop within 3 h [140]. Bhalodia et

al. have reported the development of renal failure in

rats within 24 h by clamping of both the kidneys for

60 min followed by 24 h of reperfusion [19, 93]. The

development of I/S-induced ARF in rats has also been

demonstrated by unilateral left renal artery clamping

using a small non traumatic vascular clamp for 45 min

followed by reperfusion for 24 h [36, 80]. Foglieni et

al. have reported the development of renal failure in

rats by clamping both right renal artery and vein for

60 min with a microsurgical clamp followed by reper-

fusion for 60 min [49]. Baker et al. have reported the

development of renal failure in pigs by occluding

infra-renal aorta with a standard angled arterial

cross-clamp (palpation of distal aorta to confirm total

aortic occlusion) for 150 min followed by reperfusion

for 180 min [15]. Matthijsen et al. have reported the

development of I/R-induced renal failure in mice by

applying a non traumatic vascular clamp to the left re-

nal pedicle for 40 min after 1.0 cm long midline ab-

dominal incision to induce ischemia followed by

reperfusion for 24 h [87]. Similarly, Susa et al. have

reported the development of renal failure in mice by

occluding left renal artery by an atraumatic microvas-

cular clamp to induce ischemia lasting for 25–37 min

with reperfusion of 24 h [115]. The ischemia of

45 min followed by 24 h reperfusion is more suitable

and commonly used animal model to simulate the he-

modynamic changes-induced alteration in renal func-

tion in humans.

Gentamicin-induced ARF

In humans, gentamicin has been used for the treat-

ment of life threatening Gram negative infections.

Clinically, the high dose of gentamicin (2.5 mg/kg, im

every 12 h for 7 days) has been shown to produce

nephrotoxicity [95]. It has been reported that 30% of

patients treated with gentamicin for more than 7 days

show signs of nephrotoxicity [85]. Gentamicin neph-

rotoxicity is one of the most common causes of ARF

and promotes both increased morbidity and greater

health care costs. The clinical trial reports of elder pa-

tients have documented that aminoglycosides levels

above 2.5 µg/ml possess the major risk factors for

aminoglycoside-associated nephrotoxicity [110, 116].

The mechanism of renal failure is that the polycati-

onic aminoglycoside gentamicin is prefrentially up-

taken by proximal tubular cells of the nephron by

binding to negatively charged phospholipids on the

brush border and is then quickly transferred to the

transmembrane protein – megalin [88]. After inter-

nalization via endocytosis, the aminoglycoside is

transported to the lysosome and tightly binds to acidic

phospholipids in the lipid bilayer, causing reduced

phospholipase activity and production of phos-

pholipid metabolites. The ability of gentamicin to

alter mitochondrial respiration has been well docu-

mented in reports of both in vitro and in vivo studies

[59]. Other factors that contribute to the pathogenesis

of gentamicin nephrotoxicity include generation of

superoxide anion and hydroxyl radicals, alteration of

anti-oxidant defense systems, depletion of reduced

glutathione, Na+-K+-ATPase inhibition, opening of

mitochondrial permeability transition pore and activa-

tion of renin-angiotensin system [8, 90, 92, 138].

Different methods have been employed to induce

renal failure in rats that include ip administration of

gentamicin sulfate at a dose of 100 mg/kg/day (in

0.9% NaCl) for 5–8 days and assessment of renal fail-

ure assessed 24 h after the last gentamicin injection

[44]. Xie et al. reported the development of ARF in

rats by administration of relatively higher dose of gen-

tamicin sulfate at the dose of 150 mg/kg, sc route for

five days [137]. On the other hand, in another varia-

tion, the development of ARF in rats has been shown

by administrating gentamicin at a dose of 200 mg/kg

twice daily for four consecutive days [99]. Volpini et

al. have reported the development of ARF in rats by

administration of gentamicin at a dose of 40 mg/kg,

im, twice a day for nine days [128], while Bledsoe et

al. reported the development of ARF in rats by ad-

ministration of gentamicin at a dose of 80 mg/kg, sc

for ten days with the assessment of renal failure on the

eleventh day [21]. The administration of gentamicin

100 mg/kg, ip, for 5 consecutive days inducing renal
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dysfunction is more commonly used model and

closely mimics the antibiotic-induced changes in re-

nal function in clinical setup.

Cisplatin-induced ARF

Cisplatin [cis-diaminedichloroplatinum(II)], an anti-

cancer drug, is broadly used for the therapy of cancers

such as ovarian, head and neck carcinomas, and germ

cell tumors. Nephrotoxicity is frequent and is the ma-

jor limitation in cisplatin-based chemotherapy. In hu-

mans, high dose of cisplatin (75 mg/m2) has been

used as baseline chemotherapeutic agent for the man-

agement of lung cancer. However, at this dose signifi-

cant kidney damage has been seen in patients. The pa-

tients are administered saline infusion prior to and fol-

lowing cisplatin (total of 3.5–4.0 liters during 3–4 h)

to prevent nephrotoxicity. The previous clinical stud-

ies had also reported that cisplatin in a dosage of

20 mg/m2/day for 5 days causes significant changes in

serum creatinine, creatinine clearance and 2.4 fold higher

concentration of urine N-acetyl-b-D-glucosaminidase

(an indicator of tubular damage) levels [134]. There

are several mechanisms that contribute to renal dys-

function following exposure to cisplatin that include

direct tubular toxicity in the form of apoptosis and ne-

crosis that is mediated through inflammation, reactive

oxygen species (ROS), calcium overload, phospholi-

pase activation, depletion of reduced glutathione, in-

hibition of mitochondrial respiratory chain function,

induction of apoptosis, opening of mitochondrial per-

meability transition pore (MPTP) and ATP depletion

[10, 26, 67, 94].

Izuwa et al. have reported that administration of

5 ml/kg cisplatin (0.1% of saline solution) in the ab-

dominal cavity is associated with development of

ARF in rats within 72 h of administration [61], while

Roncal et al. reported the development of renal failure

with the same dose of cisplatin after five days of drug

injection [104]. Other reports have documented the

development of renal failure with a single ip dose of

6 mg/kg [74], 20 mg/kg and 30 mg/kg cisplatin in rats

within 72 h [79, 89]. The ARF model has also been

developed in mice by injecting a single dose of cis-

platin 16 mg/kg, ip and renal dysfunctioning has been

observed after 72 h of injection [76]. On the other

hand, Lu et al. have reported the induction of ARF in

mice by injecting cisplatin at a dose of 30 mg/kg, ip

[83]. Other research groups have also developed

cisplatin-induced renal failure model in mice by vary-

ing the dose of cisplatin that include 12 mg/kg, ip [6];

18 mg/kg, ip [7]; 40 mg/kg, ip [81].

Radiocontrast media-induced ARF

Clinically, radiocontrast media are very commonly

used in radiology particularly for cardiac catheteriza-

tion. Radiocontrast-induced nephropathy is a frequent

clinical problem and is a major cause of acute renal

failure [24]. Patients administered with radiocontrast

media have been reported to exhibit an increased fre-

quency of clinical adverse events including perma-

nent impairment of renal function, longer hospital

stay and increased mortality rate. The incidence of ra-

diocontrast nephropathy approaches 30–50% in pa-

tients with volume depletion, congestive heart failure,

preexisting renal failure, or diabetes mellitus [11]. In

patients, isoosmolar radiocontrast (86% of iodixanol)

and low-osmolar radiocontrast agent (14% of iohexol)

induce acute renal failure [24, 132]. The pathogenesis

of radiocontrast nephropathy appears to be multifac-

torial and includes a deleterious reduction of renal ar-

teriolar blood flow and glomerular filtration rate as

well as the direct renal tubular toxicity caused by the

radiocontrast agents [43]. The pathophysiology of

toxic renal injury caused by radiocontrast media in-

volves changes in generation of free radicals, inflam-

matory mediators, alteration of anti-oxidant defense

systems and development of apoptosis [142].

Different research groups have employed different

contrast media to develop renal failure models in ani-

mals. Diatrizoate is a water-soluble organic iodide con-

trast medium (1-deoxy-1-(methylamino)-D-glucitol 3,5-

diacetamido-2,4,6-triiodobenzoate) [50]. In the pure

form, it contains 59.87% of organically bound iodine

and 50% (w/v) solution contains 300 mg I/ml. It has

an osmolality of 1550 mosm/kg, and is hypertonic to

blood. Erley et al. [45] have reported the development

of ARF in rats by administration of sodium ditriazoate

at a dose of 2 ml/kg into the jugular vein over a period

of 2 min. After the injection, three clearance periods

are performed each lasting 30 min, in which urine and

blood sampling is done to assess the renal failure [45].

Yen et al. have reported the development of ARF in

rats within 1 h by administration of 10 ml/kg of ditria-

zoate with an iodine load of 3700 mg/kg via the tail

vein [141], while Colbay et al. reported the develop-

ment of ARF in rats within 24 h by iv injection of

ditriazoate (7 ml/kg) over a period of 5 min [33].
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Iohexol is commonly used as a non-ionic X-ray

contrast media agent [98] and for the measurement of

GFR. Iohexol does not bind to serum proteins and is

100% filtered through glomerulus, with no indica-

tions of tubular secretion or reabsorption. Touati et al.

have reported the development of renal failure in rats,

in which rats were uninephrectomized and six days

later, the aorta was clamped above the renal artery and

a low-osmolar contrast media (CM), ioxaglate, was

injected (1 ml/min; 3 min) via an aortic puncture in

the single remaining kidney. The parameters to assess

the renal failure were determined 24 and 48 h after

CM administration [122]. Lee et al. have reported the

development of renal failure in mice within 24 h by ip

administration of iohexol (350 mg iodine/ml, 1.5–3 g

iodine/kg) [75].

Kwak et al. [72] have reported the development of re-

nal failure in rats by administering three doses of the con-

trast medium named Ultravist via iv route: low dose (CT:

0.5 ml/kg = 0.15 g iodine/kg), standard (CT: 2 ml/kg =

0.6 g iodine/kg), and high-dose (CT: 8 ml/kg = 2.4 g

iodine/kg). The blood sampling was done 48 h after

the contrast injection to assess the renal failure [72].

Agmon et al. have reported the development of renal

failure in rats by injecting sodium iothalamate (80%)

through the arterial cannula over 2–3 min, at the dos-

age of 6 ml/kg. The blood samples were withdrawn

24 h after the contrast medium injection to assess the

renal impairment [3]. Single dose administration of

diatrizoate 7–10 ml/kg induced renal failure is more

commonly used animal model to clinically simulate

radiocontrast media-induced renal failure at the time

of cardiac catheterization in patients.

NSAID-induced ARF

Acetaminophen-induced ARF

Acetaminophen is most widely used in the world as

an analgesic and antipyretic drug that is safe at thera-

peutic dosages. However, it is also known to cause he-

patic necrosis and renal failure in humans [56] and

animals [52] in overdoses. In human, acetaminophen

represents a growing cause of renal failure in current

medical practice. Acetaminophen-induced renal in-

sufficiency is consistent with acute tubular necrosis,

an increase in the plasma creatinine level and a de-

crease in the GFR. The cumulative doses of aceta-

minophen and aspirin have been documented to in-

duce the renal failure at the dose of 100–499 g and

500–2,999 g or ³ 3,000 g, respectively, in patients

[130]. Oxidative stress is reported to play a role in the

pathogenesis of acetaminophen-induced renal damage

whose metabolism occurs via cytochrome-P (CYP)

450 enzymes in both the liver and the kidneys. In renal

tissues, prostaglandin synthetase and N-deacetylase

enzymes play a key role in the formation of free radi-

cals and their metabolites. At higher doses, aceta-

minophen is shunted through these pathways leading

to the increased production of reactive oxygen/nitro-

gen metabolites, gradual GSH depletion, formation of

lipid peroxidative products leading to cell death and

renal failure [1, 17, 51, 52].

Palani et al. reported the development of ARF in

rats within 24 h by administrating a single dose of

acetaminophen (750 mg/kg, po) [100]. Adeneye et al.

and Cekmen et al. have reported the development of

ARF within 24 h in rats by administration of a single

dose of acetaminophen 800 mg/kg, ip, which was dis-

solved in normal saline [2, 27]. Recently, Kheradpez-

houh et al. have reported that ARF may be induced in

rats within 18–24 h by ip administration of a single

dose of acetaminophen (700 mg/kg), dissolved in pro-

pylene glycol and distilled water (50:50) [69]. Aceta-

minophen is also used to induce ARF in mice, as Li et

al. have reported the development of ARF within 16 h

in mice by administration of a single nephrotoxic dose

of acetaminophen (600 mg/kg, dissolved in saline,

25 ml/kg, ip) [78]. In another study, Chen et al. have

reported the development of ARF within 4 h in mice

with different age groups, i.e., young ones with age of

3–31 month and old ones with age of 30–31 months,

by administration of the same dose of acetaminophen

(375 mg/kg, ip) dissolved in ethanol:propylene glycol

(1:4) [29]. Single dose administration of acetamino-

phen (600–750 mg/kg) induced renal failure in ro-

dents closely related to renal dysfunction due to over-

dose of acetaminophen in humans.

Diclofenac sodium-induced ARF

Non-steroidal anti-inflammatory drugs (NSAIDs) are

the most common prescription medicines and diclofe-

nac is widely used NSAID for the management of

pain and inflammation associated with arthritis. Un-

fortunately, one of the main side effects of NSAIDs

administration is renal function damage [42]. There-

fore, the research has been directed for exploring

non-steroidal analgesics that do not exhibit the typical

side effects associated with NSAIDS including renal
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failure [30]. In human, diclofenac has been widely

used NSAID for the management of pain and inflam-

mation associated with arthritis [133]. A clinical trial

report has documented that diclofenac (75 mg/day for

six months) induces severe renal injury [60]. NSAIDs

mediated abrogation of prostaglandin synthesis and

resultant renal ischemia is the major mechanism and

intra-renal ROS generation is also potential mecha-

nism contributing to development of acute interstitial

nephritis [42]. Experimentally, ip administration of

diclofenac (15 mg/kg) injection for 3 day has been re-

ported to induce renal failure in rats [42].

Osmosis-induced ARF

Osmotic nephrosis is described on the morphological

basis and is characterized by vacuolization and swel-

ling of the renal proximal tubular cells. Clinically, os-

motic nephrosis is due to intravenous infusion of hy-

pertonic sucrose, hydroxyethyl starch, dextrans, and

contrast media to reduce intra-cranial pressure [84]. In

preclinical studies, osmotic diuresis is produced by

administering 20% sucrose solution in rabbits that

produces renal failure within the hour, and is charac-

terized by vacuolar degeneration and nuclear shrink-

age of tubular cells [55]. Zhang et al. have reported

that single dose administration of mannitol (4%, 9%,

19% and 27%) with dose of 5 ml/kg leads to induction

of renal apoptosis and acute renal damage in sponta-

neous hypertensive rats [144].

Ifosfamide-induced ARF

Ifosfamide (IFO), a synthetic analog of cyclophospha-

mide, is an alkylating oxazaphosphorine and is widely

used as first-line combination therapy for a variety of

malignancies including metastatic germ-cell testicular

cancer and some sarcomas [28]. High-dose chemo-

therapy using IFO leads to hemorrhagic cystitis, Fan-

coni syndrome and ARF [28]. Ifosfamide has been

documented to induce the renal failure in patients at

higher cumulative doses of 73.5 g/m2 [47]. The other

clinical trial report has documented that cumulative

ifosfamide dose of 9–128 g/m2/course induces severe

renal failure in pediatric osteosarcoma patients [16].

In another study, ifosfamide dose of 12 g/m2 for

6 consecutive days has been shown to develop neph-

rotoxicity in 45.46% of patients that required hemo-

dialysis and subsequently 36.36% of patients were re-

ported to die [18]. IFO mustard reacts with deoxyri-

bonucleic acids (DNA) molecules to form intra-and

inter-strand cross-links, causing the DNA strand to

break and ultimately cell apoptosis and/or necrosis

[145, 146]. Ifosfamide has also been shown to inhibit

glutathione synthesis, generate reactive oxygen spe-

cies, mitochondrial damage and apoptosis leading re-

nal failure [28, 109, 145]. Chloroacetaldehyde (CAA,

a metabolite of ifosfamide) causes depletion of pro-

tein thiol and mitochondrial ATP, DNA cross-links

and inhibition of DNA synthesis [65, 113]. Badary has

demonstrated that ip administration of ifosfamide at

a dose of 50 mg/kg for 5 consecutive days induces the

renal damage in rat [14]. ARF has been shown to de-

velop in mice by ip injection with different range of

doses such as 350, 550, 800 or 1100 mg/kg of ifosfa-

mide. However, the dose of 550 mg/kg of ifosfamide

was reported to produce reproducible ARF within

72 h [145]. Single dose administration of ifosfamide,

550 mg/kg, ip, induced renal failure in more com-

monly employed animal model to study various as-

pects of renal dysfunction due to anticancer agents-

induced renal failure in cancer patients.

Uranium-induced ARF

The kidney is being particularly sensitive to uranium.

In chronically exposed uranium workers, the reduc-

tion in renal proximal tubular reabsorption of amino

acids and low molecular weight proteins consistent

with uranium nephrotoxicants has been reported

[120]. Uranium nephrotoxicity has been extensively

studied in experimental animals using uranyl nitrate

(UN) and uranyl acetate, and is characterized by an

increased serum creatinine and blood urea nitrogen

(BUN) accompanied by abnormal electrolyte excre-

tion, proteinuria, glucosuria and tubular necrosis [20].

As with many nephrotoxins, uranyl-mediated patho-

logic damage is most evident in the straight position

of the proximal tubule [25].

Avasthi et al. reported the development of renal

failure in rats by iv administration of two doses of ura-

nyl nitrate 15 mg/kg and 25 mg/kg [13]. Later, re-

searchers have reported the development of renal fail-

ure in rats within 5 days by ip administration of single

dose of uranyl nitrate (0.5 and 10 mg/kg) dissolved in

0.9% of saline [101, 121]. Fleck et al. reported the de-

velopment of renal failure in rats by administration of

single dose of uranyl nitrate (5 mg/kg, ip) which was

dissolved in 0.9% NaCl [48]. It has been reported that

single injection of 1 ml/kg (5 mg/kg) into the tail vein
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of rat induces renal failure [70, 71]. The plasma levels

of urea nitrogen and creatinine increase significantly

from third day to fifth day after intravenous admini-

stration of uranyl nitrate [71, 77]. Choi et al. have re-

ported the development of renal failure in rats within

5 days by iv administration of uranyl nitrate at a dose

of 5 mg/kg [32]. Subcutaneous injection of uranyl

acetate dihydrate (5 mg/kg) has also been reported to

generate ARF within 72 h [39, 40].

Mercuric chloride-induced ARF

Mercuric chloride (HgCl2) is a well-known renal toxi-

cant that causes ARF. A single injection of HgCl2 into

rats results in necrosis of the tubular epithelial cells of

the kidney [124]. Early tubular epithelial injury in-

duced by mercuric chloride consists of fragmentation

of the plasma membrane, swelling of the mitochon-

dria and disruption of the nucleus and cytoplasmic or-

ganelles. Oxidative stress, which occurs after the

metabolic generation of ROS, seems to play an im-

portant role in the pathogenesis of HgCl2-induced

ARF [22]. Zimmermann et al. have reported the de-

velopment of ARF in rat within 24 h by administra-

tion of a single sc injection of HgCl2 at a dose of 2.5

and 4.7 mg/kg [147]. Yoneya et al. have reported the

development of ARF in rats within 24 h by ip admini-

stration of HgCl2 (1 mg/kg) dissolved in saline (1 mg/

ml) [143]. Ewald et al. have also been reporting the

development of ARF in mice within 24 h by admini-

stration of a single ip injection of HgCl2 at a dose of

6 mg/kg [46]. Ahn et al. has developed renal failure in

rabbits within 24 h by administration of a single sc

dose of HgCl2 at 10 mg/kg [4]. The development of

ARF in rats within 24 h by administration of a single

sc dose of HgCl2 at 4.0 mg/kg and 5.0 mg/kg has also

been described [12, 106]. The administration of mer-

curic chloride 6 mg/kg, ip (single dose) in rabbit and

10 mg/kg, sc in mice (single dose) induced renal fail-

ure models more commonly used to clinically mimic

the chemical industrial hazard associated with ARF in

human.

Potassium dichromate-induced ARF

Chromium is a naturally occurring element found in

volcanic dust, rocks, soil, plants and animals. The

most common forms of chromium in the environment

are hexavalent (Cr6+) and trivalent (Cr3+). Cr6+ and

Cr3+ are widely used in industrial and chemical pro-

cesses such as leather tanning, printing, in hair dyes,

steel manufacturing and wood preservative produc-

tion. In some regions, waste disposal of chromium

compounds to the environment contributes to increase

its presence and potential toxicity [111]. In biological

systems, the soluble forms of Cr6+ are absorbed more

easily than Cr3+ and are reduced to Cr3+ via Cr5+ by

glutathione, ascorbate and hydrogen peroxide [5].

Once chromium is absorbed, it is distributed in the

liver, lung, spleen, kidney and heart. Appel et al. have

reported the development of non-oliguric pattern of

ARF in rat within 24 h by administration of a single sc

injection of potassium dichromate (K2Cr2O7) 15 mg/

kg [9]. Recently, Khan et al. have demonstrated that

a single injection of potassium dichromate (15 mg/kg,

sc) causes development of ARF within 48 h [68].

Folic acid-induced ARF

Folic acid (FA) induced ARF is a conventional animal

model of human ARF [118]. FA-induced renal injury

is associated with the rapid appearance of FA crystals

within renal tubules and subsequent acute tubular ne-

crosis, followed by epithelial regeneration and renal

cortical scarring [23, 91]. The molecular mechanisms

by which FA induces ARF remain poorly understood.

FA-induced renal failure is characterized by necrosis

and apoptosis of tubular epithelial cells. In FA treated

animals there is marked reduction in the expression of

anti-apoptotic protein B-cell lymphoma-extra large

(Bcl-xL) in kidneys along with marked elevation of

tumor necrosis factor-a (TNF-a) in blood and kid-

neys [129]. An iv injection of folic acid (250 mg/kg)

is reported to induce ARF after 48 h in mice [129].

Ferric-nitrilotriacetate-induced ARF

Nitrilotriacetic acid (NTA), a synthetic chelating agent,

is used as a household and hospital detergent in vari-

ous countries. NTA is a low-toxic agent [54, 97];

however, the ferric-nitrilotriacetate (Fe-NTA) com-

plex causes acute nephrotoxicity in animals as well as

in humans [54, 86]. Fe-NTA-induced generation of

free radicals, including superoxide anions and hy-

droxyl radicals, is a major mechanism of renal toxic-

ity [125]. Hamazaki et al. have reported that the ad-

ministration of single dose of Fe-NTA (15 mg iron/kg)

induces the acute tubular necrosis and renal failure in

rats [54], while Umemura et al. reported that oral ad-

ministration of Fe-NTA (12 mg Fe/kg) in rats causes
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ARF [125]. Furthermore, administration of the single

dose of Fe-NTA (8 mg iron/kg, ip) has also been re-

ported to induce renal failure in rats [53]. ARF is in-

duced within 24 h in mice by ip injection of Fe-NTA

with different doses such as 1, 2, and 4 mg/kg [58].

S-(1,2-dichlorovinyl)-L-cysteine-induced ARF

S-(1,2-Dichlorovinyl)-L-cysteine (DCVC) is a potent

nephrotoxicant and is a metabolite of trichloroethyl-

ene (TCE), a ground water contaminant listed as one

of the most hazardous chemicals by Agency of Toxic

Substances and Disease Registry (ATSDR) [38].

DCVC selectively damages the proximal tubules of

the kidneys and causes mortality by ARF [37, 136].

Administration of DCVC (30 mg/kg, ip) in mice is

reported to cause loss of renal architecture within 24 h

[102]. Darnerud et al. have reported that administra-

tion of single dose of DCVC at the lower dose of

5 mg/kg and higher dose of 25 mg/kg produces ARF

in mice in a dose dependent manner. Administration

of DCVC 5 mg/kg is reported to induce moderate le-

sions in the straight proximal tubules within 24 h.

Furthermore, administration of 25 mg/kg of DCVC is

documented to produce more pronounced lesions in

the tubular segment that extend to other segments

such as sub-capsular region [37]. Wolfgang et al.

[136] have reported that two stereoisomers L-DCVC

(at 10�5 M) and D-DCVC (at 10�5 M) produce renal

injury in vitro system using rabbit renal cortical slices.

Furthermore, administration of 25 mg/kg was also re-

ported to produce ARF within 24 and 48 h in rabbits

[102, 136].

Sepsis-induced ARF

Cecal ligation and puncture (CLP) induced polymi-

crobial sepsis is also employed to induce ARF in rats.

The rats are anesthetized and a 2 cm ventral midline

incision is made to expose and ligate the cecum with

a 4.0 silk just distal to the ileocecal valve to avoid

intestinal obstruction. Thereafter, ligated cecum is

punctured three times with a 16 gauge needle fol-

lowed by drainage with 3 mm wide latex slice twice

and 5 mm width latex slice once. After this procedure,

animals are fluid resuscitated with sterile saline

(40 ml/kg) and within 24 h the animals develop renal

failure as detected by an increase in creatinine levels

along with extreme lethargy, diarrhea, piloerection

and tachypnea [139]. Ruetten et al. have demonstrated

that intravenous infusion of lipopolysaccharide (LPS)

(10 mg/kg) for 30 min in the the left femoral vein in-

duces ARF in rat [105]. Johannes et al. have reported

that 30 min infusion of LPS (2.5 mg/kg) induces en-

dotoxemia associated renal failure in rat [64]. Jesmin

et al. have demonstrated that single ip injection of

LPS derived from Escherichia coli (E. coli 055:B5)

(15 mg/kg) induces the potential ARF in rats [63]. Re-

cently, the renal artery occlusion along with sc injec-

tions of Escherichia coli in 4 week old rats is reported

to cause renal failure [96]. An ip administration of

bacterial toxic protein, i.e., LPS 15 mg/kg (single

dose) induced renal failure in rats is more commonly

employed animal model that mimics the infection-

induced renal failure in humans.

Bipyridyls-induced ARF

Paraquat and diquat dibromide are commercially

available herbicides and are extensively used world-

wide. Diquat is useful for studying the effects of ROS

in vivo particularly in renal system [114]. It stimulates

cellular production of ROS by undergoing cyclic re-

duction-oxidation processes, in which the diquat dica-

tion is reduced to the monocation radical, which in-

turn reduces molecular oxygen to superoxide. Lock

and Ishmael has demonstrated that administration of

paraquat (680 µmol/kg, po, and 108 µmol/kg, sc) cause

the renal tubular damage after 6 and 24 h, respectively,

in rats [82]. Diquat (680 µmol/kg, po)-induced renal

tubular damage is characterized by urinary proteinuria

and glucosuria within 6 to 24 h in rats [82]. It has

been reported that a single oral dose of diquat

(540 µmol/kg) induces the renal functional changes

and kidney damage in rats [103]. Rogers et al. [103]

have demonstrated that cumulative dose 0–50 µmol/

kg of diquat ip during the period of 6 h induces the

ARF in glutathione reductase-deficient mice, with the

dose of 7.5 µmol/kg diquat, renal injury is mainly

demonstrated in proximal tubules within 1 h and tubu-

lar necrosis is observed within 2  h [103].

Conclusions

The development of different animal models of acute

renal failure, especially those closely simulating clini-

cal conditions, has contributed immensely in under-
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standing the pathophysiology underlying the onset of

renal failure. Since the etiology for induction of renal

failure is multifold, therefore, a large number of ani-

mal models have been developed to mimic the clinical

conditions of renal failure. Glycerol-induced renal

failure closely mimics the rhabdomyolysis; ischemia-

reperfusion-induced ARF simulate the hemodynamic

changes-induced changes in renal functioning; drug-

induced such as gentamicin, cisplatin, NSAID, ifosfa-

mide-induced ARF mimics the renal failure due to

clinical administration of respective drugs; uranium,

potassium dichromate-induced ARF mimics the occupa-

tional hazard; S-(1,2-dichlorovinyl)-L-cysteine-induced

ARF simulate contaminated water-induced renal dys-

function; sepsis-induced ARF mimics the infection-

induced renal failure and radiocontrast-induced ARF

mimics renal failure in patients during use of radio-

contrast media at the time of cardiac catheterization.
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