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Abstract:

Phenothiazines belong to the oldest, synthetic antipsychotic drugs, which do not have their precursor in the world of natural com-
pounds. Apart from their fundamental neuroleptic action connected with the dopaminergic receptors blockade, phenothiazine de-
rivatives also exert diverse biological activities, which account for their cancer chemopreventive-effect, as: calmodulin- and protein
kinase C inhibitory-actions, anti-proliferative effect, inhibition of P-glycoprotein transport function and reversion of multidrug re-
sistance. According to literature data on relations between chemical structure of phenothiazines and their biological effects, the main
directions for further chemical modifications have been established. They are provided and discussed in this review paper.
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Abbreviations: CaM – calmodulin, cAMP – adenylate cy-
clase, cGMP – guanylate cyclase, CNS – central nervous sys-
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– P-glycoprotein, Phts – phenothiazine derivatives, PKC – pro-
tein kinase C, TPZ – trifluoperazine

Introduction

Drugs from phenothiazine family exhibit a wide range
of biological effects. Together with their main neuro-

leptic action, other biological activities of importance
to their cancer chemopreventive effect were docu-
mented (anti-CaM activity, inhibition of the PKC ac-
tivity, decrease of cell proliferation, and inhibition of
the Pgp transport function) [14, 22, 33]. The mecha-
nisms of these activities have been already well rec-
ognized and linked to chemical structure of com-
pounds from the phenothiazine family.

General chemical formula of the phenothiazines is
given in Figure 1.

According to the literature data, substituents at-
tached to the position C-2 of the tricyclic phenothi-
azine ring and the length of the alkyl bridge connect-
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ing the nitrogen atom at position 10 (N-10) of the tri-
cyclic ring, with the terminal amine group in the side
chain, determine activity of Phts against cancer cells
[14, 30, 31, 34], and the activity is more strongly
bound to the type of substituents in the phenothiazine
ring than by the nature of the side chain [20]. In ac-
cord with this concept, the phenothiazine ring modifi-
cations gave the derivatives (e.g., benzo[a]phenothi-
azines, azaphenothiazines) with marked anticancer ef-
fects on various cell lines in vitro [27, 28, 33].

This review paper provides the literature data on
relations between the chemical, three-dimensional
structure of Phts and their biological activity. To our
knowledge, the subject of multidirectional biological
activity of Phts regarding their chemical structure has
not been documented.

Chemical structure of Phts and their

antipsychotic activity

Phts are amphiphilic compounds, which acquire posi-
tive charge in physiological pH values. They are used
as antipsychotic drugs, interact with various receptors
in the CNS, especially strongly block the dopaminer-
gic receptors [44]. Phts also inhibit other receptors on
neurons in the CNS, including a-adrenergic, sero-

tonin, histamine, muscarinic or GABA-ergic recep-
tors, however, the affinity for dopaminergic receptors
is the strongest [29, 32, 37, 53].

The affinity of Phts to dopaminergic receptors is
explained by the fact that the three-dimensional con-
figuration of Phts resembles (to some extent) the do-
pamine structure [51], as is presented in Figure 2.

Phts applied as neuroleptic drugs easily cross the
blood-brain barrier, since they exhibit a strong affinity
to lipid bilayers of the cell membranes in neurons and
other lipid-rich tissues since the phenothiazine ring
possesses a high degree of lipophilicity [41]. In order
to obtain an active neuroleptic derivatives, the hydro-
gen atoms attached to carbon C-2 and nitrogen N-10
atoms were substituted by different chemical groups,
and structures of various Phts given in the literature
contained at the N-10 position: piperazine, piperidine,
or aliphatic side chain [6] (Fig. 1).

Depending on the structure of substituents in the
side chain, the intensity of neuroleptic action of Phts
could be ranked as follows: piperazine group >
piperidine group > aliphatic chain [10]. The piperazine
Phts demonstrate the strongest antipsychotic action,
but they also induce the central side effects (including
dyskinesia and extrapyramidal disorders) [10].

It was well concluded that the presence of trifluoro-
methyl substituent (-CF3) attached to carbon C-2
atom, as well as the propyl connector between the
lipophilic core and the tertiary amine moiety were
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Fig. 1. General chemical structure of
Phts



crucial for the neuroleptic activity of Phts, and the oc-
currence of electronegative atoms/groups attached to
carbon C-2 atom of the phenothiazine ring intensified
their antipsychotic activity in the following order: X =
-SO2NR2 > -CF3 > -CO-CH3 > -Cl [10]. The propyl
connector between the phenothiazine ring and the fi-
nal amine determined the function of Phts as dopa-
minergic receptor antagonists, and their antipsychotic
activity. It was also established that shortening the
length of this alkyl linker to two carbon atoms caused
a change in the affinity for the receptors [10].

Chemical structure of Phts and their

inhibition of the CaM and the PKC activities

The CaM is the multifunctional, widespread protein,
which binds four calcium cations [35]. The protein is
one of the major, calcium-dependent regulator of bio-
chemical processes and plays a vital role in cell physi-
ology. The blocking effect of Phts on the CaM activity
could explain pleiotropic effects of these drugs on cell
physiology, among them the inhibition of cells prolifera-
tion and the decrease of activity of many CaM-de-
pendent enzymes in various intracellular biochemical
pathways [50]. The CaM-dependent enzymes known as
being inhibited by phenothiazines and the roles of these
enzymes in cell physiology are listed in Table 1.

According to the literature data, the CaM-activated
enzymes participate in the Pgp phosphorylation pro-
cess, which is an important step in the transport func-
tion of the protein and its ATPase activity [12, 13, 16].

Cells have developed various mechanisms of pro-
tection against foreign compounds; one of the effective
mechanism is connected with the Pgp activity. Physio-
logical function of Pgp is fulfilled by transport of en-
dogenous substrates, as well as structurally dissimilar
xenobiotics (including drugs) outside a cell [46]. The
Pgp overactivity reduces cell membrane permeability
for various drugs, also for cytostatic drugs, and thereby
decreases the effect of cancer chemotherapy [47].
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Tab. 1. Selected enzymes activated by CaM, which are inhibited by
Phts, and the role of those enzymes in cellular physiology [8, 50]

ENZYME ROLE

1. cAMP Synthesis of cyclic adenylic acid

2. cGMP Synthesis of cyclic guanylic acid

3. CaM-dependent protein kinase Phosphorylation of various
proteins

4. CaM-dependent protein
phosphatase (calcineurin)

Dephosophorylation of various
proteins

5. Nicotinamide adenine
dinucleotide kinase

Synthesis of nicotinamide adenine
dinucleotide phosphate

6. Phosphorylase kinase Glycogen degradation

7. Inositol triphosphate kinase Phosphoinositol metabolism

8. Myosin light-chain kinase Contractility and motility

9. Ca2+-dependent
phosphodiesterase (PDE1)

Hydrolysis of cyclic adenylic acid
and cyclic guanylic acid

Fig. 2. The structural complementarity between the phenothiazines
and dopamine. A. – the structure of phenotiazines, B. – the structure
of dopamine, C. – the superposition of phenothiazines and dopamine
structures [10]



It was established that induced by Phts an inactiva-
tion of the CaM-dependent enzymes, as well as inhi-
bition of the PKC, lead to a decrease of Pgp phospho-
rylation and inhibited its transport function [2–4, 48].
The potency of Phts in decreasing the CaM and the
PKC activities is related to their chemical structure.
The presence of at least a propyl alkyl connector,
which bound the terminal amine to the core, deter-
mined the PKC inhibitory activity by Phts, and the
primary amines, as well as unsubstituted piperazines
in the aminoalkyl side chain important for that activ-
ity [1]. Also a type of substituent being attached to the
carbon C-2 atom of the phenothiazine ring played
a crucial role in the inhibition of PKC activity; deriva-
tives with -Cl atom exhibited the greatest potential,
while the presence of -CF3 group diminished the ac-
tivity of phenothiazine compounds against PKC [1].

The three-dimensional structure and chemical prop-
erties of Phts determine interaction with the CaM. In
general, the CaM inhibitors are amphiphatic amines
with positive charge in neutral pH of the solution [50].
It was established that the presence of aromatic ring
and cationic fragment in their molecule is crucial for
this activity – aromatic ring showed a strong affinity
for the hydrophobic surface on the CaM after its acti-
vation in the presence of calcium, whereas the cationic
group interacted with anionic side chain of the CaM
[35]. The substituents which increased the lipophilic
properties of the ring system (for instance: -CF3) led to
the elevation of the anti-CaM activity, whereas the sub-
stitution of rings by hydrophilic groups (-OH) caused
the reverse effect, it decreased the Phts potency in the
CaM inhibition [35, 50].

The capacity of Phts to inhibit the CaM activity
also depends on length of the alkyl bridge, which
binds the pheniothiazine ring with the amine side
group – the alkyl bridge should be structured by three
carbon atoms, and the strongest inhibitors of the CaM
have had a propyl chain in their structure [50]. Also
a type of an amine in the side chain was of great im-
portance, and the presence of an amine in the cyclic
system e.g., the piperazine group, was typical for the
CaM antagonists with high activity [50].

Anti-proliferative and anti-MDR activities of Phts

Phts exhibit anti-proliferative effect on neoplastic and
genotoxically damaged cells [7, 17, 36]. It was proved
that the capacity of Phts for inhibition of a cell cycle was
directly proportional to their activity as the CaM inhibi-
tors. In the aspect of their anti-proliferative activity Phts
could be ranged as follows: TFP = FPh > CPZ [18].

The important biological activity of Phts is their
ability to reverse the MDR of neoplastic cells to cyto-
static drugs. Phts could be included in the group of
compounds which increase cellular sensitivity to cy-
tostatic drugs (they restore the drug sensitivity of neo-
plastic cells), mainly by a strong inhibition of the
Pgp-dependent mechanism of the MDR [14, 15].

Among the possible mechanisms of the MDR re-
version by Phts, we evaluated the unspecific reactions
with cell membrane lipids, because of high degree of
lipophilicity exhibited by the tested Phts [9]. In the
case of FPh, a representative drug from the phenothi-
azine family, our previous results revealed that the
phase transition temperatures of FPh/DPPC mixed
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Tab. 2. Suggested elements of Phts’ chemical structure which determine their biological/chemopreventive activity

The target of biological
activity of Phts

The elements of chemical structure of Phts

Substituent at the C-2 position The length of the alkyl linker Terminal amine type in the side chain

CaM Lipophilic substituents

-CF3, -Cl

n* ³ 3 Tertiary amine group or 4-substituted
piperazine

PKC Lipophilic substituents

-CF3, -Cl

n ³ 3 Primary or secondary-(4-unsubstituted
piperazine) amine group

Pgp Hydrophilic substituents

-COCH3, -COC2H5,
-SO1-2(CH3)
-SO2N(CH3)2, -OCH3

n = 2–4 Tertiary amine group or
4-substituted piperazine

* n – the amount of carbon atoms in the alkyl connector



liposomes decreased in proportion to increased con-
centration of FPh [9]. Fluidization of the structure of
lipid membrane, which took place in the presence of
FPh, was probably one of the key mechanisms of in-
hibiting Pgp activity and the essential element of in-
crease of cells’ chemosensitivity [9, 45]. The other de-
scribed mechanisms of the MDR reversion by Phts
depend on their inhibiting influence on the CaM and
the PKC function, and on direct interaction with
ligand binding sites within the Pgp [26, 31, 38].

Clear relations were established between the mo-
lecular structure of Phts and their ability to inhibit
proliferation and reverse of the MDR [16]. Phts, like
the majority of the MDR modulators, are lipophilic,
heterocyclic compounds [47], which possess at least
two aromatic rings in their chemical structure. It was
found that the single-ring compounds were less active
than those with a tricyclic ring system [34]. Some
authors assumed that the presence of a charge-
assigned nitrogen atom was a very important feature
of the Pgp modulators [2, 52]. However, progesterone,
a strong inhibitor of the Pgp, does not contain nitro-
gen in its chemical structure [49]. The research
proved that nitrogen atom was an important compo-
nent of chemical structure of the Pgp inhibitors, al-
though it was not decisive for that activity [11].

It was also stated that the substituents in the phe-
nothiazine ring, which increased lipophilicity, intensi-
fied anti-proliferative action of derivatives, while the
anti-MDR activity of Phts, depending on the substitu-
ent in the C-2 position, increased in the following or-
der: -H < -Cl < -CF3 [20]. Importantly, experimental
data showed that the decrease of lipophilic properties
of phenothiazine compounds, as by introducing the
-OH group to the basic phenothiazine system, mark-
edly lowered their effect on the MDR inhibition [14].

The lipophilic nature of Phts enables them to easily
penetrate and overcome the cell membrane. In the
physiological pH the cationic properties of Phts ex-
plain well the interaction of the drugs group with ani-
onic cell membrane lipids [5, 47].

Some authors noticed, however, that the process of
reversing the MDR could be influenced by the struc-
ture of a substituent at position C-2 rather than by its
lipophilicity [34]. It was also established that the pres-
ence of an ether group -OCH3 attached to carbon
C-2 atom of Phts, and especially, a carbonyl group in
the form of acetyl and propionyl group [-COCH3,
-COC2H5)] or a sulfinyl, sulfonyl or sulfonamide

group [-SO1-2(CH3), -SO2N(CH3)2], significantly in-
creased anti-MDR activity of the analogues [34].

Another way to increase the anti-cancer activity of
Phts could be a modification of an aminoalkyl side chain
length and a change of the type of terminal amine. Phts
which exert a substantial anti-proliferative potential and
which restore cell sensitivity to cytostatics, have had
a four-carbon atoms alkyl bridge and piperazine group
in the side chain; piperazine and piperidine amines are
established more active in these actions in comparison
with noncyclic amine groups [25, 34].

Some authors implied that Phts with a four-carbon
atoms bridge in the side chain and piperazine struc-
ture substituted in position 4 by methyl group would
possess a relatively higher activity in reversing the
MDR than those with a di- and tricarbon atoms linker
or with a noncyclic amine [34]. The same authors also
suggested that the presence of tertiary amine in the
side chain could enhance an anti-MDR activity of
Phts when compared to derivatives containing pri-
mary or secondary amines [34]. Furthermore, it was
observed that the carbonyl substituent, regardless of
the position (whether in the ring structure or in the
side chain), increased the chemosensitive activity of
Phts only in the presence of secondary or tertiary
amine [34]. Compounds devoided of such amine
groups did not inhibit the MDR, regardless of the
presence of carbonyl group [34]. It is likely that the
carbonyl group participates in creating the intra- and
intermolecular hydrogen bonds with the Pgp [34].

The capacity to create hydrogen bonds is a vital na-
ture of compounds interacting with the Pgp [11, 38].
The presence of many elements of proton-donor ca-
pacity were identified within the intramembrane frag-
ments of the Pgp; they probably participate in creating
hydrogen bonds with acceptor substrate groups [38,
40]. It is assumed that the more hydrogen bonds the
compounds create, the more intensive interaction with
Pgp they exert [38], and, accordingly, the derivatives
with the greatest capacity to create hydrogen bonds
were the most effective inhibitors of the protein [42].

Spatial and chemical structure analysis of various
compounds able to interact with the Pgp have led to
the classification of Phts into separate types of com-
pounds: those which contain two electron donor
groups at the distance of 2.5 ± 0.3 Å are classified as
type I pattern, while compounds with two electron do-
nor groups at the distance of 4.6 ± 0.6 Å from each
other or three electron donor groups (a spatial dis-
tance of 4.6 ± 0.6 Å between two external groups is
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required) belong to the type II pattern. It was stated
that compounds are able to bound to the Pgp if they
contain at least one motive of the type I pattern, or
one motive of the type II pattern. At least two systems
of electron donor groups of the I type, or one of the I
type and one of the II type, were required for the com-
pound to be transported by the Pgp. The presence of
suitably spatially located acceptor groups or electron
donors (e.g., carbonyl, ether group, tertiary amine,
and so forth), participated in creating hydrogen bonds
with the Pgp [38, 39].

It was experimentally verified for trifluoperazine
that Phts with electron donor groups creating type I
patterns directly interacted with the Pgp [23, 24, 38].
The direct interaction between Phts and Pgp is consid-
ered as a crucial mechanism necessary for inhibition
of the transport function of the protein and an increase
of cellular chemosensitivity [19, 21].

Conclusion

Phts exert strong inhibitory activity on the CaM, the PKC
and the Pgp, which collectively account for their cancer
chemopreventive and also MDR-reversing effects. Ac-
cording to the literature and also to our previous results,
several directions for future chemical modification of
Phts were presented and discussed in this review.

To revolve around a cancer chemopreventive activ-
ity of Phts, the following chemical structure condi-
tions should be perceived as determinative: 1) the
presence of carbonyl group and, to a lesser extent,
also of an ether group, attached to the carbon C-2
atom, 2) the presence of a four-carbon atoms alkyl
bridge and piperazine group in a form of piperazine
and pyrimidine amines in the side chain, 3) the occur-
rence of terminal tertiary amine, or 4-substituted
piperazine.

These main features of chemical structure have
a marked influence on the anti-MDR activity of Phts. It
should be also notified that the presence of acceptor
groups or electron donors, able to create hydrogen
bonds with the intramembrane fragments of the Pgp (as
carbonyl and ether groups, tertiary amines) are crucial
requirement for effective inhibitors of the MDR.

An introduction of new drugs able to increase the
effect of cytostatic drugs on cancer cells is a major
challenge for pharmacy today, and it could provide
a marked improvement of cancer chemotherapy. The

search for compounds able to increase accumulation
of cytostatic drugs and their effect on cancer cells
(i.e., chemosensitizing, anti-MDR drugs) are currently
being carried on by many pharmaceutical teams.
Among the candidates for effective anti-MDR drugs,
Phts are worth further studying, since they are strong
inhibitors of the Pgp transport function and exhibit
several cancer chemopreventive actions.
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