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Abstract:

We investigated the changes in hippocampal kynurenic acid (KYNA) concentrations and the amino acids involved in neuronal activ-
ity regulation following valproate (VPA) administration (400 mg/kg ip) in pentylenetetrazole-kindled rats (in vivo). We found a re-
markably long-lasting increase in KYNA levels following VPA administration, and this effect correlated with a rise in GABA levels.
No changes in the concentration of other analyzed amino acids were present. It is likely that the antiepileptic and neuroprotective
properties of VPA may also be a consequence of an increase in the hippocampal KYNA concentration.
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Introduction

Valproate (VPA) is a commonly used antiepileptic drug
with a well-established efficacy in the treatment of
generalized and partial seizures. The action mechanism
of VPA has not been fully elucidated [1]. VPA inhibits
NMDA-evoked transient depolarization and neuronal
voltage-gated Na� channels, increases GABA turnover
and potentiates GABAergic currents [15, 20].

Kynurenic acid (KYNA) is a metabolite of trypto-
phan degradation and is synthesized from L-kynu-
renine in a reaction that is mediated by kynurenine
aminotransferases. KYNA is a non-competitive an-
tagonist of �7 nAChRs, and it is also a low-potency,

broad-spectrum antagonist of ionotropic glutamate re-
ceptors. Similar to GABA, KYNA is one of the most
important endogenous inhibitory neuroactive agents.
Moreover, KYNA exerts neuroprotective activity [6,
18, 19].

The present study was designed to determine whether
KYNA plays a role in the central action mechanism of
VPA. Therefore, we investigated changes in the con-
centrations of KYNA in the hippocampus, which is
one of the key structures in the process of epilepto-
genesis, and other amino acids that are involved in the
regulation of neuronal activity following acute VPA
administration to pentylenetetrazole (PTZ)-kindled,
free-moving rats. All of the examined groups con-
sisted of kindled animals.
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Materials and Methods

Male Wistar rats, weighing 200 ± 20 g at the begin-
ning of the experiment, were used in the study. The
animals were housed in standard laboratory condi-
tions in a temperature- and humidity-controlled envi-
ronment. The study was approved by the Committee
for Animal Care and Use at the Medical University in
Warsaw. The animals received repeated intraperito-
neal (ip) injections of PTZ at a subconvulsive dose of
30 mg/kg, three times a week. After each injection,
the rats were observed for 30 min for the intensity of
convulsions according to a five-point behavioral
Racine scale [14]. Animals were considered kindled
when they exhibited stage 5 seizures in two consecu-
tive trials. Finally, a cohort of 16 kindled animals was
used in the microdialysis study: 8 saline-injected
(control) and 8 VPA-injected animals. Subsequently
(at least seven days after the last seizure episode), the
rats were anesthetized with a mixture of ketamine
(Ketanest, Parke Davis, USA) and sodium pentobar-
bital (Morbital, Biovet, Poland) and fixed in a stereo-
taxic apparatus (Stoelting & Co., USA). The dialysis
probe, with an outer diameter of 0.3 mm (hand-made,
U-shaped membrane loop of 4 mm long), was im-
planted unilaterally (randomly on the left/right) into
the dorsal hippocampus (AP: 3.5 mm, L: ± 1.5 mm,
V: –4 mm) [17]. After 30 h, the microdialysis probes
were perfused with artificial cerebral spinal fluid.
After an initial 2 h equilibrium period, two 20 min di-
alysate samples (40 µl each) were collected. The
mean of these collections was used as a reference
point (baseline = 100%) for the percent changes in the
subsequent 8 collections (the absolute values of the
KYNA baseline concentration (the means ± SEM,
nM) were 2.9 ± 0.6 and 1.7 ± 0.3 for the saline and
VPA treated group, respectively; the absolute values
of the amino acids baselines are presented in Tab. 1).
Immediately afterwards, the animals received a single
ip injection of VPA at 400 mg/kg (sodium salt; dis-
solved in 0.9% NaCl and titrated with 1 M HCl to a fi-
nal pH around the physiological level) or saline, and
8 consecutive samples were collected (40 µl each).
VPA was obtained from Sanofi-Aventis (Poland).
The dose of VPA was selected based on the pilot
study and previous studies.

When the experiment was terminated, the brain of
each animal was sliced and examined to verify the
probe placement. The extracellular concentrations of

amino acids (alanine (ALA), taurine (TAU), GABA,
glutamate (GLU), glycine (GLY) and aspartate (ASP))
were determined using an HPLC system with electro-
chemical detection according to the method described
previously [17]. The detection of KYNA and trypto-
phan (TRP) was performed using HPLC with fluores-
cence detection [11]. The fluorescence detector was
set at an excitation of 344 nm and an emission wave-
length of 398 nm for the detection of KYNA, and 254 nm
and 404 nm were used to detect TRP. The retention
time of KYNA and TRP was 9 and 17 min, respec-
tively. Calibration curves were created by the injec-
tion of KYNA and TRP standards in concentrations
that ranged from 0.5–120 nM and 0.5–20 µM, respec-
tively.

The differences in amino acids and KYNA concen-
trations between the experimental groups in relative
values (i.e., percentage changes) were analyzed using
ANOVA for repeated measures followed by the LSD
post-hoc test. The correlation analysis was performed
using Pearson’s r test. (Statistica, Release 8, StatSoft
Inc., USA).

Results

VPA produced a significant increase in hippocampal
KYNA concentrations compared to the baseline levels
and the saline control group (drug effect (F = 23.58,
p < 0.005), time effect (F = 14.57, p < 0.005), and drug
× time interaction (F = 13.56, p < 0.005)). Post-hoc

analyses revealed that the KYNA level was signifi-
cantly increased compared to the baseline level after
60 min (p < 0.05), 80 min (p < 0.01), 100 min (p <
0.005), 120 min (p < 0.005), 140 min (p < 0.005) and
160 min (p < 0.005) and compared to the control group
at 60 min (p < 0.05), 80 min (p < 0.05), 100 min (p <
0.005), 120 min (p < 0.005), 140 min (p < 0.005) and
160 min (p < 0.005) post-VPA administration (Fig. 1).

There also appeared to be a significant effect of
VPA on the concentration of GABA in the hippocam-
pus (drug effect (F = 6.00, p < 0.05), time effect (F =
2.53; p < 0.05), and drug × time interaction, (F = 2.82,
p < 0.01)). The post-hoc test showed that GABA con-
centrations were increased compared to the baseline
level after 60 min (p < 0.05), 100 min (p < 0.05),
120 min (p < 0.005), 140 min (p < 0.005) and 160 min
(p < 0.005) following VPA administration. Compared
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to the saline control group, GABA concentrations
were increased after 60 min (p < 0.05), 120 min (p <
0.05), 140 min (p < 0.01) and 160 min (p < 0.005)
post-VPA administration (Tab. 1).

The changes in the concentrations of GABA and
KYNA after VPA administration were significantly
positively correlated (r = 0.55, p < 0.001). No signifi-
cant changes in the concentrations of the other studied
amino acids were found.

Discussion

We found a very potent increase (more than 1,600%)
in KYNA concentration in the rat hippocampus after
valproate (VPA) administration to PTZ-kindled rats.
Furthermore, the increase in KYNA was positively
correlated with a local rise in the GABA levels. No
changes in the concentrations of the other analyzed
amino acids were found.
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Tab. 1. Changes in hippocampal amino acid concentrations after saline or valproate injection. The data show the means ± SEM and represent
the percentage change (%) compared to the baseline values, which are presented as absolute values (µM). Saline treated group (SAL) n = 8.
Valproate treated group (VPA) n = 8. * Differs from baseline. � Differs from control (saline treated). *� � p < 0.05, ��p < 0.01, ***� ��� p < 0.005

GROUP BASELINE
(µM)

20 min
(%)

40 min
(%)

60 min
(%)

80 min
(%)

100 min
(%)

120 min
(%)

140 min
(%)

160 min
(%)

GABA/SAL 0.05

± 0.01

100.5

± 12.1

197.1

± 4.3

101.5

± 4.1

127.5

± 24.2

133.1

± 24.8

118.5

± 28.9

115.0

± 17.5

92.1

± 16.5

GABA/VPA 0.04

± 0.01

89.4

± 21.9

142.9

± 21.1

213.0

± 30.6*
��

172.7

± 11.9

191.4

± 67.1*

235.4

± 60.4***
� �

251.8

± 83.9***
����

285.4

± 73.9***
����

GLU/SAL 1.50

± 0.30

83.1

± 4.3

94.1

± 4.2

71.4

± 4.8

91.6

± 10.4

74.2

± 6.6

107.8

± 39.4

73.9

± 3.8

90.4

± 8.9

GLU/VPA 1.51

± 0.40

84.7

± 5.7

93.9

± 12.1

184.7

± 50.5

81.0

± 14.2

70.7

± 9.5

104.7

± 26.2

110.1

± 26.0

83.14

± 9.4

TRP/SAL 0.33

± 0.04

91.2

± 4.1

109.8

± 6.3

88.7

± 3.8

102.2

± 16.7

87.0

± 4.0

87.2

± 6.9

91.0

± 8.6

92.9

± 10.3

TRP/VAP 0.35

± 0.06

131.4

± 39.8

92.6

± 9.2

119.3

± 5.9

113.0

± 6.6

117.1

± 8.5

115.6

± 8.9

119.3

± 9.8

110.9

± 10.5

TAU/SAL 2.77

± 0.30

85.2

± 6.6

90.7

± 5.4

81.4

± 5.4

87.9

± 10.2

78.6

± 5.3

71.0

± 6.3

82.1

± 6.5

118.0

± 29.4

TAU/VPA 3.45

± 0.50

94.7

± 3.1

104.8

± 6.3

100.8

± 5.2

93.7

± 5.5

78.9

± 2.5

77.5

± 3.4

83.4

± 6.4

77.1

± 2.3

GLY/SAL 2.25

± 0.30

89.4

± 4.4

115.2

± 5.5

78.9

± 5.3

113.8

± 13.3

88.8

± 8.0

218.2

± 132.3

90.8

± 8.5

132.8

± 16.0

GLY/VPA 2.94

± 0.50

95.0

± 5.2

81.3

± 8.0

106.0

± 6.8

87.9

± 6.5

87.2

± 12.9

102.4

± 20.1

72.9

± 15.7

172.4

± 62.8

ASP/SAL 0.59

± 0.10

66.9

± 10.8

122.3

± 11.0

50.3

± 10.6

91.5

± 16.9

59.8

± 12.4

190.2

± 125.8

60.4

± 9.8

108.7

± 18.6

ASP/VPA 0.50

± 0.10

95.0

± 11.4

89.4

± 14.4

157.3

± 32.1

76.6

± 4.7

72.5

± 12.9

134.6

± 27.5

86.9

± 11.8

126.3

± 29.3

ALA/SAL 4.43

± 0.30

87.9

± 5.4

107.1

± 5.4

84.1

± 5.8

103.8

± 12.6

87.2

± 5.4

97.4

± 12.7

89.8

± 5.0

102.8

± 9.7

ALA/VPA 5.76

± 0.70

91.6

± 4.1

92.8

± 5.0

96.1

± 2.5

86.5

± 4.6

75.6

± 5.7

83.4

± 7.7

62.2

± 4.2

76.9

± 4.3



This study did not allow us to determine the
mechanism of the VPA-induced increase in KYNA
levels. Several hypotheses need to be considered.
First, VPA could evoke a peripheral release of kyn-
urenine that is easily transported to the brain and
stimulate KYNA production [9, 18]. Second, val-
proate could stimulate the activity of kynurenine
amino transferase (KAT); however, this effect has not
been observed in vitro [8]. Third, VPA could inhibit
kynurenine hydroxylase, which is a major kynurenine
metabolizing enzyme, to increase the KYNA concen-
tration [13]. The mechanism of action of VPA re-
quires further study. However, it seems clear that the
increased concentration of KYNA may be an impor-
tant element in its antiepileptic and neuroprotective
activities. In in vitro studies, KYNA reduces the spon-
taneous epileptiform firing of neurons, which indi-
cates that this effect could be a part of the acute anti-
seizure action of VPA [16]. Moreover, VPA exerts its
potent neuroprotective activity in different models of
neurodegeneration [2, 7, 10], but this mechanism’s ef-
fect is still not known. In light of our data, KYNA may
play an important role in this phenomenon. Further-
more, the fact that the KYNA brain concentration is in-
creased after the peripheral VPA administration creates

the possibility of more clinical research on the neuro-
protective effects of this antiepileptic drug [4, 5].

Because our study was performed in kindled rats, it
was necessary to determine the effects of kindling on
hippocampal KYNA concentrations. In our previous
work, we found that PTZ-induced kindling was ac-
companied by a progressive decrease of KYNA in
brain structures, including the hippocampus [11]. The
current study shows that even in this situation, VPA
led to a very potent increase in hippocampal KYNA
concentrations.

Another important observation concerns the posi-
tive correlation between the KYNA and GABA con-
centrations based on the inhibitory role of GABA-
ergic innervation of the limbic structures in the regu-
lation of ictal activity [12]. Accordingly, VPA strongly
stimulates GABAergic neurotransmission [15]. Fur-
ther research is needed to understand the central ef-
fects of VPA [3]. Our unpublished results show that
the effects of VPA on KYNA are also present after in-
tragastric drug administration in a dose-dependent
manner. Moreover, an applied dose of VPA (400 mg/
kg) protected against PTZ-induced seizures in all rats.
It is also important to determine whether the KYNA
increase is VPA-specific or a more general effect of
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Fig. 1. The effect of valproate or saline on the basal concentration of KYNA in the hippocampus. The data show the means ± SEM and repre-
sent the percentage change compared to the baseline values (100%). Eight animals in each group. * Differs from baseline. � Differs from con-
trol (saline treated). *� � p < 0.05, ** p < 0.01, ***� ��� p < 0.005



other antiepileptic drugs. This important problem is
now under study in our laboratory.

This the first report indicating a very potent stimu-
latory and concomitantly occurring effect of VPA on
the limbic concentrations of KYNA and GABA. Be-
cause of the inhibitory role of both endogenously oc-
curring substances on the neuronal activity, the cur-
rent study strongly suggests their contribution to the
process of epileptogenesis and the mechanism of ac-
tion of VPA. In light of our findings, it is likely that
the antiepileptic and neuroprotective features of VPA,
at least in part, may be a consequence of the increases
in the KYNA levels.
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