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Abstract:

The addictive potential of nicotine is linked to psychomotor and cognition-enhancing effects. Histamine (H)3 receptor antagonism

has similarly received attention for a role in cognition, however, the role of H3 receptors are far less studied for affects on nicotine-

induced locomotor responses. In the present study we tested whether the H3 receptor antagonist 4-(2-{2-[(2R)-2methylpyrrolid-

inyl]ethyl}-benzofuran-5-yl) benzonitrile (ABT-239) influenced the psychomotor responses to acute and repeated nicotine, includ-

ing sensitization and conditioned locomotion. ABT-239 (0.3–3 mg/kg) did not alter basal, nicotine-evoked (0.4 mg/kg) locomotor

responses, the expression of sensitization, or cue-conditioned locomotion. However, in combination studies rats pretreated with

a separate dose of ABT-239 (1 mg/kg) prior to nicotine (0.4 mg/kg) for 5 days and then challenged with nicotine (0.4 mg/kg) after

a 5-day withdrawal period, showed significantly higher locomotor hyperactivity in comparison with the effect observed in nicotine-

pretreated and challenged rats. Our findings implicate a limited role for H3 receptors in locomotor responses to nicotine.
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Introduction

Nicotine, the predominant addictive component of to-

bacco, is arguably the most widely consumed legal

stimulant and accounts for the largest cause of avoid-

able deaths and disease in developed countries (for re-

view see [41]). The drug is responsible for the devel-

opment of physical and psychological addiction in-

cluding drug seeking and relapse. Additionally, in

humans, nicotine withdrawal syndrome, including ir-

ritability, anxiety, depressed mood, concentration dif-

ficulties and craving, limits abstinence and increases

relapse (for brief review see [40]). In laboratory ani-

�����������	��� 
������ ����� ��� ��������� 1553

�����������	��� 
�����

����� ��� ���������

	

� �������

��������� � ����

�� 	�������� �� �� �! "�#���

��#��� $" %�!� �� 
"���"��



mals nicotine also affects many aspects of behavior,

such as reward, discrimination, psychomotor activa-

tion and behavioral sensitization [2, 39, 40].

Interestingly, some human and animal studies dem-

onstrate that nicotine administration improves cognitive

functions, especially memory and attentional function

[23, 25]. This fact is especially important in the scope of

addiction as a link between drug addiction and learning

and memory formation processes was suggested to-

gether with similarities in the molecular signaling

mechanisms associated with long-term adaptations [24,

26, 35]. It is therefore critically important to understand

the pharmacology of the cognitive effects of nicotine.

Nicotine exerts its behavioral effects acting at the

nicotinic acetylocholine (ACh) receptors (nAChRs) (for

review see [41]). Among all central nAChR subtypes,

both the �4�2 heterodimeric combination and �7 ho-

modimeric receptors seem to play a crucial role in the

reinforcing and locomotor effects [1, 6, 17, 20, 22, 38,

39] and the mnemonic responses [7] of nicotine. By the

stimulation of �4�2 and �7 receptors located presynap-

tically nicotine facilitates the release of a variety of neu-

rotransmitters including Ach, catecholoamines, sero-

tonin, �-aminobutyric acid, glutamate and histamine [37]

that may all be responsible for or modulate the

nicotine-evoked addiction and/or cognition processes.

Histaminergic (H) neurotransmission is also an im-

portant candidate for the interactions with nicotinic

systems and has been implicated in many functions of

the central nervous system [18]. Distinct H receptor

subtypes have been characterized, including H�, H�,

H� and the recently discovered the H� receptor sub-

type [25, 29]. Of interested here, H� receptors are con-

stitutively active and highly expressed in the central

nervous system as autoreceptors on H neurons and

also as heteroreceptors on non-H neurons. Research

suggests that H� receptors regulate Ach, dopamine,

�-aminobutyric acid, glutamine, noradrenaline and se-

rotonin neurotransmission [16, 33] and influence cog-

nition, memory, sleep, food intake and many other

processes [16, 18]. Specifically blockade of H� recep-

tors promotes attention, wakefulness and adjusts short

term and social memory in rodents [16, 28, 30, 33].

Moreover, limited studies on H� receptor antagonists

plus nicotine indicated reversal of nicotine choice ac-

curacy impairment in the radial-arm maze repeated

acquisition task [21]. However, the role of H� recep-

tors is much less – if any – studied in the nicotine-

induced locomotor and sensitizing responses and

other forms of memory-related behaviors.

For this reason we focused on separate and com-

bined effects of an H� receptor antagonist in models

of locomotor activity and sensitization to shed light

on this question. In the present study we tested

whether the H� receptor antagonist 4-(2-{2-[(2R)-2-

methylpyrrolidinyl]ethyl}-benzofuran-5-yl (ABT-239) [8]

influenced the psychomotor response to acute and re-

peated nicotine treatment in rats using locomotor ac-

tivity measurements as the readout. The experimental

design included several animal models to develop

nicotine sensitization or nicotine-evoked the condi-

tioned locomotor activation. Locomotor stimulation

and the development of psychomotor sensitization

have been suggested to predict the additive property

of a drug [31, 36; but see also 32], while a drug of

abuse-induced conditioned locomotion activity may

be considered as a valid animal model of craving [9].

Moreover, the sensitized state, which parallels the ad-

dictive process, more than certainly involves mne-

monic processes [35].

Materials and Methods

Animals

Male Wistar rats (220–250 g; derived from Charles

River Laboratories, Germany) housed under standard

laboratory condition (12 h light/dark cycle, room tem-

perature 21 ± 1°C, 40–50% humidity) were used. Food

and water were available ad libitum. Animals were

habituated to the laboratory conditions for at least one

week prior to use. All behavioral experiments were

performed between 8:00 and 14:00, and were con-

ducted according to the National Institute of Health

Guidelines for the Care and Use of Laboratory Ani-

mals and to the European Community Council Direc-

tive for the Care and Use of Laboratory Animals of 24

November 1986 (86/609/EEC), and approved by the

Local Ethics Committee. Each experimental group

consisted of 7–8 rats. The animals were drug naive at

the start of the studies.

Drugs

Nicotine bitartrate, reported as free base nicotine

weight (Sigma-Aldrich, St. Louis, USA) was diluted

in saline (0.9% NaCl) with the pH (5–7) adjusted and
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given sc immediately before behavioral recording.

ABT-239 (Solvay Pharmaceuticals Research Labora-

tories, Weesp, The Netherlands) was suspended in

one drop of 1% solution of Tween 80 (Sigma, St.

Louis, USA) and dissolved in saline (0.9% NaCl).

ABT-239 was administered ip 60 min before behav-

ioral recording. Fresh drug solutions were prepared

on each day of experimentation. The doses of nicotine

and ABT-239 used were selected according to those

previously reported [2, 11, 14, 15, 39, 41].

Locomotor activity measurements

Apparatus

Locomotor activity in rats was recorded individually

for each animal in Opto-Varimex cages (Columbus In-

struments, Columbus, USA) linked on-line to a com-

patible IBM-PC. Each cage (43 × 44 × 25 cm) was

surrounded with an 15 × 15 array of photocell beams

located 3 cm above the floor surface as reported previ-

ously [15, 41]. Interruptions of the photobeams re-

sulted in the recording of horizontal locomotor activity,

defined as a distance traveled and expressed in cm.

Basal and acute nicotine-evoked hyperactivation

Locomotor activity was recorded in non-habituated rats

which received either ABT-239 (0.3, 1 and 3 mg/kg) or ve-

hicle (1 ml/kg) combined with saline or nicotine (0.4 mg/

kg). Measurements of locomotor activity in Opto-

Varimex cages (see above) began immediately after the

second injection (saline or nicotine) and lasted 60 min.

Development of nicotine-evoked sensitization

Rats received either ABT-239 (0.3, 1 and 3 mg/kg) or

vehicle combined with saline or nicotine (0.4 mg/kg)

repeatedly for 5 days in the experimental chambers in

order to develop sensitization. Animals remained in

their home cages during days 6–9 of the experiment.

On the 10�� day, rats were challenged with nicotine

(0.4 mg/kg) before the locomotor measurements.

Measurements of locomotor activity began immedi-

ately after nicotine injection and lasted 60 min.

Expression of nicotine-evoked sensitization

Rats were given repeated pairings of a distinct test en-

vironment (experimental chamber, above) with either

nicotine (0.4 mg/kg) or vehicle (1 ml/kg) for 5 days.

Rats remained in their home cages during days 6–9 of

the experiment. Animals were then challenged on day

10, with nicotine (0.4 mg/kg), in experimental cham-

bers. ABT-239 (0.3, 1 and 3 mg/kg) was given on day

10 of the experimentation before injection of the nico-

tine. Measurements of locomotor activity began im-

mediately after nicotine injection and lasted 60 min.

Expression of nicotine-evoked conditioned

locomotor hyperactivity

Rats were given repeated pairings of a distinct test en-

vironment (an experimental chamber) with either

nicotine (0.4 mg/kg) or saline (1 ml/kg) for 5 succes-

sive days. Animals remained in their home cages dur-

ing next 6–9 days of the experiment. On the day 10,

they were challenged with saline in experimental

chambers. ABT-239 (0.3, 1 and 3 mg/kg) or vehicle

was given on day 10 of the experimentation before in-

jection of saline. Measurements of locomotor activity

began immediately after saline injection and lasted

60 min.

Statistical analyses

The data were expressed as the means ± SEM. The lo-

comotor activity data were analyzed using a one

(nicotine repeated treatment)- or two (acute treat-

ment)-way analysis of variance (ANOVA), followed

by post-hoc Dunnett’s or Newman-Keuls tests applied

to evaluate the treatment group effect. All compari-

sons were made with an experiment wise type I error

rate (�) set at 0.05.

Results

Basal locomotor activation

ABT-239 at each of the doses tested (0.3, 1 and

3 mg/kg) caused no statistically significant changes

(p > 0.5) in basal locomotor activity as compared with

vehicle treated controls (Tab. 1).
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Acute nicotine-evoked hyperactivation

A main overall effect of treatment (F(1,55) = 5.6, p <

0.001) was observed. In rats, nicotine (0.4 mg/kg) sig-

nificantly (ca. 88%) augmented basal locomotor ac-

tivity compared with the effect of saline treated rats

(Fig. 1), yet pretreatment with ABT-239 (0.3–3 mg/kg)

did not affect nicotine hyperactivation.

Nicotine-evoked sensitization

On day 10, administration of a challenge dose of nico-

tine (0.4 mg/kg) to animals that received nicotine

(0.4 mg/kg) repeatedly (days: 1–5) resulted in a sig-

nificant (ca. 89–97%) increase in the locomotor activ-

ity compared to the effect of acute nicotine injection

to vehicle-treated (days: 1–5) rats (Fig. 2).

ABT-239 at a dose of 1 mg/kg (but not 0.3 or

3 mg/kg) administered repeatedly (days: 1–5) in com-

bination with nicotine enhanced the locomotor hyper-

activity induced by nicotine challenge on day 10

(F(4,32) = 6.23, p < 0.01) (Fig. 2A).

On day 10, pretreatment with ABT-239 (0.3–3 mg/

kg) did not change the locomotor activity stimulated

by nicotine in rats exposed to repeated (days: 1–5)-

nicotine treatment (F(4,31) = 5.98, p < 0.01) (Fig.

2B).
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Tab. 1. Effects of ABT-239 on basal locomotor activity in rodents

Drug and dose (mg/kg) Distance traveled [cm]/60 min
the mean ± SEM

Vehicle 1947 ± 389

ABT-239, 0.3 mg/kg 1879 ± 357

ABT-239, 1 mg/kg 2014 ± 403

ABT-239, 3 mg/kg 2104 ± 378
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Fig. 1. Effects of ABT-239 on the acute nicotine-stimulated locomotor
activity in rats. Total (60-min) horizontal activity mean after admini-
stration of vehicle (VEH) or ABT-239 (0.3–3 mg/kg) followed by injec-
tion of vehicle or nicotine (NIC; 0.4 mg/kg) are presented. N = 7–8/
group. Each bar represents the horizontal locomotor activity means
± SEM; *** p < 0.001 compared to VEH
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Fig. 2. Effects of ABT-239 on the development (A) and expression (B)
of nicotine-evoked sensitization in rats. (A) Rats were treated repeat-
edly (days 1–5) with vehicle (VEH) or ABT-239 (ABT; 0.3–3 mg/kg) be-
fore nicotine (NIC; 0.4 mg/kg). On day 10, the animals were given
a challenge dose of nicotine (0.4 mg/kg). N = 7–8/group. Each bar
represents the horizontal locomotor activity means ± SEM; * p < 0.01
compared to VEH, # p < 0.05 compared to NIC. (B) Rats were treated
repeatedly (days 1–5) with vehicle (VEH) or nicotine (NIC; 0.4 mg/
kg). On day 10, the animals were given ABT-239 (ABT; 0.3–3 mg/kg)
before a challenge dose of nicotine (0.4 mg/kg). N = 7–8/group. Each
bar represents the horizontal locomotor activity means ± SEM; * p <
0.01 compared to VEH
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Expression of nicotine-evoked conditioned

locomotor hyperactivity

Intermittent nicotine treatment paired with the envi-

ronment (experimental chambers) for 5 days signifi-

cantly enhanced (at least by 72%) locomotor activity

on day 10 compared with the effect of saline-treated

(days: 1–5) exposed to the same conditions (condi-

tioned locomotor activity; Fig. 3).

On day 10, when ABT-239 (0.3 mg/kg) was given

in combination with vehicle, no alterations in locomo-

tor responses were observed in comparison to nico-

tine-treated (days: 1–5) and vehicle-challenged rats

(Fig. 3).

Discussion

Locomotor activation and behavioral sensitization

following chronic intermittent administration of nico-

tine are the commonly used screening methods to as-

sess the neuropsychopharmacological effects of novel

chemical entities on drugs of abuse [10, 31]. Some

authors have also suggested that sensitization and

drug-associated cue-induced conditioned locomotion

may additionally represent relevant paradigms model-

ing relapse and drug seeking behavior, respectively

[cf. 9]. Recently, it was underlined that during the de-

velopment of drug addiction modulation of the asso-

ciative learning processes (drug and environment)

might impact the addictive process [35] and the

mechanisms influencing the learning and memory

processes might impact the addictive properties of

nicotine. In this context, the H� receptor seems to be

valid target to modulate the neurobiology of memory

as H� receptor antagonists act as cognitive enhancers

[11, 28, 30].

In the present study, we observed that the H� recep-

tor antagonist ABT-239 with Ki = 0.45 and 1.4 nM at

human and rat H� receptors, respectively, and with

some off-target action (Ki = 400 nM activity at the

human ERK channel) [8] given acutely at 0.3–3 mg/

kg to rats did not alter basal, acute nicotine-evoked lo-

comotor responses, the expression of nicotine sensiti-

zation, or cue-conditioned locomotion in rats. There is

some limited evidence that ABT-239 can enhance the

development of nicotine sensitization but an inverted

U-shape response and spurious effects moves this hy-

pothesis for further verification. The data presented in

this paper indicate that tonic activation of H� recep-

tors does not play an important role in the locomotor

responses to nicotine in rats.

Our findings extend existing studies concerning the

multifunctional influence of H� receptor inactivation

on the behavioral actions of abused drugs that appears

very dependant on their pharmacology and on the as-

pects of reinforcement measured. Thus, more recent

results have demonstrated that ABT-239 ameliorated

ethanol-induced deficits on hippocampal long-term

potentiation, leading to the conclusion that H� recep-

tor antagonists may have the utility for reverse

changes in synaptic plasticity and learning deficits re-

lated to ethanol [34]. On the other hand, behavioral

reports evidence that H� receptor antagonism en-

hanced cocaine-induced hyperactivity [3, 4] or etha-

nol-induced conditioned place preference [27], dimin-

ished methamphetamine- or alcohol-induced locomo-

tor stimulation [5, 14]. To support our behavioral

findings, microdialysis studies have reported no

change in extracellular dopamine in the striatum fol-

lowing systemic administration of ABT-239 [14]

while nicotine – acting via nACh receptors – evokes

a variety of behavioral effects due to facilitation of the

release of dopamine in the striatal pathways [37]. De-

spite the findings showing the existence of behavior-

ally and biochemically significant negative modula-

tion between striatal H� and dopamine D� and of D�
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Fig. 3. Effects of ABT-239 on the expression of nicotine (NIC)-evoked
conditioned locomotor activity. Rats were treated repeatedly (days
1–5) with vehicle (VEH) or nicotine (NIC; 0.4 mg/kg) On day 10, the
animals were given a challenge dose of vehicle (VEH) or ABT-239
(ABT; 0.3–3 mg/kg). N = 6–8/group. Each bar represents the horizon-
tal locomotor activity means ± SEM; * p < 0.05 compared to VEH



receptors [12, 13, 19], the above-cited neurochemical

results [14] could partly explained the lack of effect of

ABT-239 on dopamine efflux.
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