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Abstract:

The aim of the present study was to investigate the influence of classic and atypical neuroleptics on the activity of cytochrome P450
2C11 (CYP2C11), measured as a rate of testosterone 2�- and 16�-hydroxylation. The reaction was studied in control liver micro-
somes in the presence of neuroleptics, as well as in the microsomes of rats treated intraperitoneally (ip) with pharmacological doses
of the drugs (promazine, levomepromazine, thioridazine and perazine 10 mg/kg; chlorpromazine 3 mg/kg; haloperidol 0.3 mg/kg;
risperidone 0.1 mg/kg; sertindole 0.05 mg/kg) for one day or two weeks (twice a day), in the absence of the neuroleptics in vitro.
The investigated neuroleptics added to control liver microsomes produced some inhibitory effects on CYP2C11 activity, which were
moderate (thioridazine: K� = 55), modest (sertindole and perazine: K� = 76 and 94 µM, respectively) or week (promazine, levome-
promazine, haloperidol and chlorpromazine: K� = 285, 280, 223 and 157 µM, respectively). Risperidone had the weakest inhibitory
effect on the CYP2C11 activity (K� = 641 µM).
One-day exposure of rats to the neuroleptics did not significantly change the activity of CYP2C11 in liver microsomes. Of the neuro-
leptics studied, only chronic treatment with levomepromazine, perazine and thioridazine diminished CYP2C11 activity; those ef-
fects were positively correlated with the observed decreases in the protein level of the enzyme. The in vivo inhibition of CYP2C11 by
chronic treatment with the three phenothiazines suggests their influence on the enzyme regulation. A possible mechanism of
CYP2C11 regulation by the neuroleptics and its pharmacological significance are discussed.
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Introduction

Cytochrome P450 (CYP) subfamily CYP2C consti-
tute the main pool of CYP in rat liver. Cytochrome
P450 2C11 (CYP2C11) is the most abundant male-
specific isoform of CYP, comprising approximately
50% of the total hepatic CYP in the adult male rat. On
the other hand, CYP2C12 as a constitutive female-
specific isoform represents about 40% of the total he-
patic CYP in female rats. The gender differences in
CYP expression are caused by the sexually dimorphic

growth hormone (GH) secretion pattern in adult ani-
mals. It has been shown that the expression of “male”
CYP2C11 depends on pulsatile GH secretion (of the
proper frequency, duration and amplitude of the
pulse), while continuous secretion of GH stimulates
the expression of “female” CYP2C12 in the adult
liver [1, 22, 27, 30, 40].

CYP2C11 is involved in the metabolism of benz-
phetamine, aminopyrine, benzo(a)pyrene, antipyrine,
aflatoxin B�, R-mephenytoin and S-warfarin [6, 21,
29, 39]. Moreover, CYP2C11 mediates hydroxylation
of some endogenous steroids such as, e.g., testoster-
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one and androstenedione, the epoxygenation of ara-
chidonic acid and the hydroxylation of vitamin D [4,
24, 32, 36]. The 2�- and 16�-hydroxylation of testos-
terone is used as a marker reaction for studying
CYP2C11 activities in rats [37, 44]. The CYP2C11
isoform is inhibited by cimetidine, diclofenac, ethanol
and inflammatory mediators [3, 23, 25, 42]. On the
other hand, the influence of glucocorticoids on the ex-
pression of CYP2C11 may be dual: at low levels, they
induce enzyme activity, but suppress it at high (stress-
induced) concentrations [19]. At a molecular level
CYP2C11 is regulated by GH via the Janus kinase 2
(JAK2)-signal transducer and activator of the tran-
scription 5b (STAT5b) pathway [7, 45, 46]. It has
been reported that phenobarbital stimulates the tran-
scription of CYP2C11 gene in the rat [1].

Previous studies showed that rat CYP2C11 exhib-
ited a 77% homology of the amino acid sequence,
some substrate preference and functional analogies to
human CYP2C9, which catalyzes the metabolism of
such clinically important drugs as S-warfarin, pheny-
toin, ibuprofen, diclofenac, tolbutamide and antide-
pressant drugs, as well as steroids and arachidonic ac-
ids [2, 4, 29, 34, 39, 43]. However, the CYP2C11-
specific reactions in rats, i.e., the 2�- and 16�-hydrox-
ylation of testosterone, are catalyzed by CYP3A4/5
(2�-hydroxylation) and by CYP2B6, CYP2C8/9 and
CYP3A4 (16�-hydroxylation) in humans [26]. Hu-
man CYP2C9 is also differently regulated compared
to rat CYP2C11 [1, 5, 22, 31].

Our recent studies have established the brain dopa-
minergic system as an important center regulating the
expression of liver CYP. They have demonstrated that
a lesion or activation of the tuberoinfundibular or the
mesolimbic pathway of the brain dopaminergic sys-
tem affects liver CYP activity and protein level
(CYP1A, CYP2B, CYP2C11 and CYP3A), as well as
blood plasma concentration of the respective pituitary
hormones (GH, T� and corticosterone) in the rat. Thus
the neuroleptic drugs that block dopaminergic D� re-
ceptors may affect CYP expression via their action on
the brain dopaminergic system, having an impact on
the endocrine and immune systems [49–51, 53, 54].

Some literature data indicate that neuroleptics
affect CYP activity. Promazine and chlorpromazine ad-
ministered in high doses (80 and 89 mg/kg, ip, respec-
tively) for 3 days induced CYP2B1; furthermore, chlor-
promazine simultaneously down-regulated CYP2C11
[28, 33]. Two-week treatment with clozapine in a dose
substantially exceeding the pharmacological/thera-

peutic one (114 mg/kg/day) increased the level and
activity of CYP1A2, CYP2B1 and CYP3A1 in rats,
whereas sulpiride (137 mg/kg/day) and remoxipride
(31 mg/kg/day) produced a decrease in the level of
CYP2B1, CYP2C11 and CYP3A1 and CYP1A2 (in
the case of the latter enzyme – only remoxipride),
having also dimished CYP2C11 mRNA. Another
study conducted by Tateishi et al. [41], who adminis-
tered chlorpromazine and thioridazine in a relatively
high dose of 20 mg/kg ip for 4 days, showed that
chlorpromazine did not change the total level of CYP,
but induced CYP2B and CYP3A, whereas thioridaz-
ine reduced the total level of CYP, as well as the level
and activity of CYP2C11, CYP2E1 and CYP3A.
Moreover, our previous studies demonstrated that
phenothiazine neuroleptics administered in pharma-
cological doses (promazine, levomepromazine, thi-
oridazine, perazine 10 mg/kg, ip, chlorpromazine
3 mg/kg, ip) for two weeks to rats, were able to inhibit
some CYP isoforms by a different mechanism, i.e., by
binding the parent compound to the cytochrome
(CYP2A, CYP2B, CYP2C6 and CYP2D), or by
forming inhibitory CYP-radical cation complexes
(CYP2D). In contrast, haloperidol (0.3 mg/kg, ip) and
the atypical neuroleptics (risperidone 0.1 mg/kg, ip,
sertindole 0.05 mg/kg, ip) were usually weak or inac-
tive in this respect [9, 10, 15–17].

To date, there have been no complete data on the
interaction of classic and novel neuroleptics with rat
liver CYP2C11. Moreover, earlier studies into the in-
fluence of neuroleptics on CYP isoenzymes were con-
ducted using very high, non-pharmacological/non-
clinical doses, administered for a short period of
the time, hence not reflecting the clinical mode of
treatment. For this reason, the present study was
aimed at investigating the effect of short- and long-
term treatment with pharmacological doses of classic
and atypical neuroleptics on the level and activity of
CYP2C11.

Materials and Methods

Drugs and chemicals

Promazine and chlorpromazine (hydrochlorides) were
provided by Polfa (Jelenia Góra, Poland), thioridazine
(hydrochloride) was obtained from Jelfa (Jelenia
Góra, Poland), perazine (dimaleate) from Labor
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(Wroc³aw, Poland), while levomepromazine (maleate)
was purchased from Egyt (Budapest, Hungary) and
haloperidol from RBI (Natick, USA). Risperidone
was donated by Janssen Pharmaceutica (Beerse, Bel-
gium), sertindole by Lundbeck (Copenhagen, Den-
mark). Testosterone and its metabolites, 2�- and
16�-hydroxytestosterone were from Steraloids (New-
port, USA). NADP, glucose-6-phosphate and glucose-
6-phosphate-dehydrogenase were purchased from
Sigma (St. Louis, USA). Polyclonal antibody, anti-rat
CYP2C11 goat serum and phenobarbital-treated rat
liver microsomes were obtained from Gentest Corp.
(Woburn, USA). A LumiGLO chemiluminescent sub-
strate was provided by KPL (Gaithersburg, USA). All
organic solvents of HPLC purity were supplied by
Merck (Darmstadt, Germany).

Animal procedures

All the experiments with animals were performed in
accordance with the Polish governmental regulations
(Animals Protection Act, DZ. U. 97.111.724, 1997).
The experiments were carried out on male Wistar rats
(230–260 g) kept under standard laboratory condi-
tions. The investigated neuroleptics were adminis-
tered intraperitoneally, twice a day for one day or two
weeks at the following pharmacological doses
(mg/kg, ip): promazine, levomepromazine, thioridaz-
ine, perazine 10; chlorpromazine 3; haloperidol 0.3;
risperidone 0.1; sertindole 0.05. The rats were sacri-
ficed at 12 h (one-day treatment) or 24 h (two-week
treatment) after the drug withdrawal, and liver micro-
somes were prepared by differential centrifugation in
20 mM Tris/KCl buffer (pH = 7.4), including washing
with 0.15 M KCl according to a conventional method.
The above procedure deprives microsomes of the
presence of parent drugs administered in vivo, which
was confirmed in our experiment by the HPLC
method [11, 12].

In vitro studies into CYP2C11 activity

– measurement of the rate of 2�- and

16�-hydroxylation of testosterone in liver

microsomes

The activity of the CYP2C11 was studied by measure-
ment of the rate of CYP2C11-specific reactions, i.e.,
2�- and 16�-hydroxylation of testosterone in liver
microsomes. After optimizing of in vitro conditions of
the reactions, the drug effects were investigated at lin-

ear dependence of the product formation on time and
protein and substrate concentrations.

To distinguish between a direct effect of neurolep-
tics on the activity of CYP2C11 and the changes pro-
duced by their one-day or two-week administration,
three experimental models were used:

Model I

The experiment was conducted on pooled liver micro-
somes from three control rats. The rate of 2�- and
16�-hydroxylation of testosterone (testosterone con-
centration between 50–300 µM) was assessed in the ab-
sence and presence of one of the neuroleptics added in

vitro (neuroleptic concentration between 50–200 µM).
Each sample was prepared in duplicate.

Model II

The experiment was carried out on liver microsomes
from rats treated with an neuroleptic for one day. Tes-
tosterone was added to the incubation mixture in vitro

at a concentration of 100 µM. The 2�- and 16�-
hydroxylation of testosterone was studied in the ab-
sence of neuroleptics.

Model III

The experiment investigated liver microsomes from
rats subjected to two-week neuroleptic treatment. Tes-
tosterone was added to the incubation mixture in vitro

at a concentration of 100 µM. The reaction was stud-
ied in the absence of neuroleptics.

Incubations (Models I, II and III) were carried out
in a system containing liver microsomes (1 mg of pro-
tein in 1 ml), Tris/KCl buffer (50 mM, pH = 7.4),
MgCl� (3.0 mM), EDTA (1 mM), NADP (1.0 mM),
glucose 6-phosphate (5 mM) and glucose-6-phos-
phate-dehydrogenase (1.7 U in 1 ml). The final incu-
bation volume was 1 ml. After a 15-min incubation,
the reaction was stopped by adding 200 µl of metha-
nol and then by cooling down in ice.

Determination of the concentration of

testosterone and its metabolites (2�- and

16�-hydroxytestosterone) in liver microsomes

Testosterone and its metabolites, 2�- and 16�-hydroxy-
testosterone, were extracted from the microsomal sus-
pension with dichloromethane (1 ml of microsomal sus-
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pension + 6 ml of the organic phase). Concentrations
of testosterone, 2�- and 16�-hydroxytestosterone
formed in liver microsomes were assessed by the high
performance liquid chromatography (HPLC) method
based on Sonderfan et al. [38]. The residue obtained
after evaporation of the extracts was dissolved in
100 µl of 50% methanol. An aliquot (20 µl) was in-
jected into the HPLC system (LaChrom, Merck-
Hitachi), equipped with UV detector, L-7100 pump
and D-7000 System Manager. The analytical column
(Supelcosil LC-18, 5 µM, 4.6 × 150 mm) was pur-
chased from Supelco (Bellefonte PA, USA). The mo-
bile phase was applied as a gradient from solvent A
(100% methanol:water:acetonitrile, 39:60:1, v/v/v) to
solvent B (70% methanol:water:acetonitrile, 80:18:2,
v/v/v) over 22 min at a flow rate of 1.5 ml/min. The
column temperature was 40°C. The absorbance was
measured at a wavelength of 254 nm. The compounds
were eluted in the following order: 16�-hydroxytesto-
sterone 8.7 min, 2�-hydroxytestosterone 11.1 min and
testosterone 15.6 min. The sensitivity of the method
allowed for quantification of 16�-hydroxytestoste-
rone as low as 0.005 nmol and 2�-hydroxytestoste-
rone as low as 0.004 nmol in one sample. The accu-
racy of the method amounted to 1.3% (16�-hydroxyte-
stosterone) and 1.2% (2�-hydroxytestosterone). The
inter- and intra-assay coefficients of variance were
about 7% for both metabolites.

Western blot analysis

The level of CYP2C11 protein in liver microsomes of
rats treated chronically with neuroleptics (Model III)
was estimated by western analysis. SDS-PAGE and
immunoblot assay were performed using a methodol-
ogy provided by Gentest, USA. Briefly, 5 µg of mi-
crosomal protein was separated on a 0.75 mm-thick
sodium dodecyl sulfate-polyacrylamide 4% (w/v)
stacking gel and a 12% (w/v) resolving gel employing
a MINIPROTEAN II electrophoresis system (Bio-
Rad, Hemmel Hempstead, UK; 130 V, 65 min). Pro-
tein was electroblotted onto a nitrocellulose mem-
brane (100 V, 100 min) and blocked overnight with
5% dried nonfat milk in PBS (phosphate-buffered sa-
line, pH = 7). After incubation with primary antibody
(polyclonal goat anti-rat antibody raised against
CYP2C11), the blots were incubated with secondary
antibody, i.e., the appropriate species-specific horse-
radish peroxidase-conjugated anti-IgG. Supersomes
CYP2C11 (cDNA-expressed rat isoform) were used

as a standard. Immunoreactivity was assessed using
an enhanced LumiGLO chemiluminescent substrate.

The intensities of the bands corresponding to the en-
zyme protein on the nitrocellulose membrane were
measured with Luminescent Image analyzer LAS-
1000 using Image Reader LAS-1000 and Image
Gauge 3.11 programs (Fuji Film, Japan).

Calculations and Statistics

The presented inhibition constants (K�) for the inhibi-
tion of a specific metabolic pathway were obtained
using a non-linear regression analysis (Program
Sigma Plot 8.0, Enzyme Kinetics). Statistical signifi-
cance (Model II and Model III) was assessed using an
analysis of variance followed by Dunnett’s test. All
values are the means ± SEM from 5–8 animals.

Results

The obtained results showed that the investigated neu-
roleptics directly inhibited CYP2C11 activity in rats,
shown as inhibition of the rate of CYP2C11-specific
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Tab. 1. The influence of neuroleptics given in vitro to rat liver micro-
somes on the CYP2C11 activity measured as the rate of 2�- and
16�-hydroxylation of testosterone (Model I)

Neuroleptics
(inhibitors)

Inhibition of CYP2C11 activity

2�-OH-T
Ki [µM]

16�-OH-T
Ki [µM]

X
Ki [µM]

I. Phenothiazines

Promazine

Chlorpromazine

Levomepromazine

Perazine

Thioridazine

178

115

262

96

56

392

200

299

93

55

285

157

280

94

55

II. Butyrophenones

Haloperidol 216 231 223

III. Atypical neuroleptics

Risperidone

Sertindole

758

73

524

79

641

76

The presented inhibition constants (K�) for the inhibition of a specific
metabolic pathway were obtained using a non-linear regression
analysis (Program Sigma Plot 8.0, Enzyme Kinetics)



reactions, i.e., the 2�- and the 16�-hydroxylation of
testosterone by the drug added to control liver micro-
somes in vitro (Model I). Thioridazine was a more po-
tent inhibitor of the reactions studied, while perazine
and sertindole were weaker in this respect (Tab. 1).
The inhibitory effects of the tested neuroleptics were
moderate (thioridazine: K� = 55), modest (sertindole
and perazine: K� = 76 and 94 µM, respectively) or
weak (promazine, levomepromazine, haloperidol and

chlorpromazine: K� = 285, 280, 223 and 157 µM,
respectively) (Tab. 1). Risperidone produced the
weakest inhibitory effect on CYP2C11 activity (K� =
641 µM) (Tab. 1).

Our study demonstrated that the investigated neu-
roleptics exerted no significant effect on CYP2C11
activity when they were given to rats for one day (i.e.,
for 24 h; Model II) (Fig. 1).

After two-week treatment with the tested neurolep-
tics (Model III), perazine, levomepromazine and espe-
cially thioridazine significantly decreased the activity
of CYP2C11 (Fig. 2). The other neuroleptics studied
did not produce any significant effect when adminis-
tered in vivo for two weeks. As shown in Figs. 3A–C,
the changes observed in CYP2C11 protein level after
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Fig. 1. The influence of 1-day exposure to neuroleptics on the
CYP2C11 activity measured as the rate of 2�- and 16�-hydroxylation
of testosterone in rat liver microsomes (Model II). All values are the
means ± SEM from 7–8 animals; (Dunnett’s test), compared with con-
trol (0.579 ± 0.057 nmol of 2�-hydroxytestosterone or 0.407 ± 0.054
nmol of 16�-hydroxytestosterone (mg protein)�� min��). PZ = promaz-
ine, CPZ = chlorpromazine, LVPZ = levomepromazine, PER = pera-
zine, THIOR = thioridazine, HAL = haloperidol, RSP = risperidone,
SERT = sertindole
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Fig. 2. The influence of two-week treatment with neuroleptics on the
CYP2C11 activity measured as the rate of 2�- and 16�-hydroxylation
of testosterone in rat liver microsomes (Model III). All values are the
means ± SEM from 7–8 animals; * p < 0.05, ** p < 0.01 (Dunnett’s
test), compared with control (0.639 ± 0.083 nmol of 2�-hydroxytesto-
sterone or 0.381 ± 0.084 nmol of 16�-hydroxytestosterone (mg pro-
tein)�� min��). PZ = promazine, CPZ = chlorpromazine, LVPZ = levo-
mepromazine, PER = perazine, THIOR = thioridazine, HAL = ha-
loperidol, RSP = risperidone, SERT = sertindole

C. Control LVPZ Std

B. Control StdPER

A.
ControlStd THIOR

Fig. 3. The effect of two-week treatment (Model III) with thioridazine
(A), perazine (B) and levomepromazine (C) on the level of CYP2C11
protein in rat liver microsomes. 5 µg of microsomal protein was sub-
jected to western analysis, and the immunoblot was probed with
polyclonal goat anti-rat antibody raised against CYP2C11. Super-
somes CYP2C11 (cDNA-expressed rat isoform) were used as a stan-
dard. The presented results are typical of three separate animals per
treatment. The histogram is the quantification of the corresponding
band intensities from the tested isoforms. All values are the mean
± SEM (n = 5). Statistical significance was assessed by Dunnett’s test
and indicated with * p < 0.05, *** p < 0.01 compared to the control.
THIOR = thioridazine, PER = perazine, LVPZ = levomepromazine



chronic treatment with phenothiazine neuroleptics
corresponded well with those related to the enzyme
activity. Thioridazine, perazine and levomepromazine
visibly decreased CYP2C11 protein level to 44, 78
and 74% of the control, respectively.

Discussion

Our present data show that neuroleptics can affect
CYP2C11 via a modest direct interaction with the en-
zyme and a significant indirect mechanism (enzyme
regulation) produced by chronic treatment. The ob-
tained results revealed interactions of the neuroleptics
(added in vitro to control liver microsomes, Model I)
with rat CYP2C11, which led to a decrease in the en-
zyme activity. Thioridazine (K� = 55 µM), perazine
(K� = 94 µM) and sertindole (K� = 76 µM) were the
most potent inhibitors of rat CYP2C11 of the drugs
studied, whose effect was more pronounced than that
of the other neuroleptics tested. The K� values ob-
tained for thioridazine and perazine may be of impor-
tance in vivo regarding the dosage and the pharma-
cokinetics of these drugs. Phenothiazine neuroleptics
are administered in relatively high doses compared to
other neuroleptics, and being taken up by the tissue,
reach concentrations that are 10–15 times higher in
the liver than in blood plasma [13, 48, 52]. Therefore,
phenothiazine neuroleptics whose K� values are below
100 µM, in particular thioridazine, may reach the he-
patic level close to the respective K� values and are
expected to decrease CYP2C11 activity in vivo. These
findings may be of physiological, pharmacological or
toxicological significance, considering the catalytic
competence of this enzyme (the metabolism of ster-
oids, drugs and toxins). As to the other investigated
drugs, the calculated K� values are above their phar-
macological/therapeutic concentrations. Sertindole
(K� = 76 µM) is not likely to directly inhibit the activ-
ity of CYP2C11 when administered in vivo, consider-
ing its low pharmacological/therapeutic doses and
concentrations [47].

The observed inhibitory potency of the investigated
neuroleptics was weaker compared to that of the pre-
viously studied CYP isoforms, i.e., CYP2D, CYP2A
and CYP2B (the K� values for all the phenothiazines
being between 15–23, 11–83 and 26–190 µM, respec-
tively), but similar to those of CYP2C6 (except for

levomepromazine and sertindole whose K� values
were 31 and 25 µM, respectively) [10, 15–17].

None of the investigated neuroleptics produced any
significant effect on CYP2C11 activity when adminis-
tered in vivo for one day (i.e., for 24 h; Model II);
however, after 2-week exposure to the neuroleptics
(Model III), decreases in CYP2C11 activity and pro-
tein level were observed after levomepromazine,
perazine and thioridazine. The effect observed in
Model III could not be ascribed to the binding of the
parent drug to the enzyme protein, found after a short
incubation period of the neuroleptics with control
liver microsomes in Model I. For liver microsomes
obtained from neuroleptic-treated animals, they were
prepared including the procedure of washing, which
deprived microsomes of the parent drugs adminis-
tered in vivo.

As mentioned in the introduction, our recent stud-
ies provided direct evidence for the important role of
the brain dopaminergic system in the regulation of
CYP expression in rat liver [49–51, 53, 54]. Accord-
ingly, the neuroleptic drugs that block dopaminergic
D� receptors may influence the secretion of pituitary
hormones (e.g., GH, ACTH, TSH) which directly or
indirectly activate nuclear/cytosolic receptors control-
ling CYP genes, including CYP2C11. Therefore,
a possible cause of the inhibitory effects on CYP2C11
expression observed in the case of levomepromazine,
perazine and thioridazine given in vivo (Model III)
may be their influence on CYP2C11 gene regulation
via blockade of dopaminergic D� receptors in the pi-
tuitary and, in consequence, the inhibition of GH se-
cretion. The above-mentioned hormone plays a crucial
role in the positive regulation of male rat CYP2C11
[1, 22, 30, 40].

The results obtained in the present study are also in
line with other observations indicating down-
regulation of CYP2C11 in rats after 2-week treatment
with the selective antagonists of dopaminergic D� re-
ceptors, sulpiride and remoxipride and after a 4-day
treatment with the less specific dopaminergic D� re-
ceptor-blocking neuroleptic thioridazine [33, 41].
However, the other phenothiazines tested, i.e., pro-
mazine and chlorpromazine, do not produce any sig-
nificant effect on CYP2C11 activity when adminis-
tered in vivo for two weeks. The lack of effect of pro-
mazine on CYP2C11 may steam from the fact that of
the phenothiazines tested, promazine is the weakest
blocker of the dopaminergic D� receptor [8, 35]. Ac-
cordingly, the effect of promazine on the secretion of
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pituitary hormones regulating the CYP2C11 gene
(mainly GH) may be negligible. In addition, this neu-
roleptic shows the ability to induce cytochrome P450
[28], which may mask its inhibitory effect on
CYP2C11 regulation via the neuroendocrine system.
On the other hand, chronic treatment with chlorpro-
mazine, which is a potent antagonist of the dopamin-
ergic D� receptor [8, 35], does not affect CYP2C11 ac-
tivity, either. Like in the case of promazine, the D�

receptor-mediated effect of chlorpromazine on the
hormonal regulation of CYP2C11 (down-regulation)
may be masked by the inducing effect of the neuro-
leptic on cytochrome P450 at a the level of the liver. It
was shown previously that chlorpromazine induced
CYP2B and CYP3A in the rat [28, 41]. Our results
with chlorpromazine are in contrast to those of Mur-
ray [28], who reported that chlorpromazine inhibited
CYP2C11 activity. However, the latter author used
a very high dose of the neuroleptic (89 mg/kg, ip) for
3 days. At such a dosage schedule, the process of en-
zyme induction might not have fully developed in the
liver to mask the inhibitory properties of chlorpro-
mazine via neuroendocrine regulation. Moreover, the
high dose of chlorpromazine may have yielded a great
number of reactive phenothiazine metabolites, such as
radical cations, which are known to interact with pro-
teins [14, 20]. Therefore, the decreased activity of
CYP2C11, observed by Murray [28], may result from
the summing up of the two mechanisms mentioned
above (neuroendocrine down-regulation and the en-
zyme inhibition by reactive chlorpromazine metabo-
lites).

In contrast to the phenothiazines studied, haloperi-
dol (another typical neuroleptic) administered in the
pharmacological/therapeutic dose of 0.3 mg/kg, ip did
not produce significant changes in CYP2C11 activity
in our experiments. However, haloperidol given to
rats in a very high/toxic dose of 40 mg/kg, ip (the
dose close to LC��) visibly increased the mRNA level
of CYP2C11, CYP1A2 and CYP3A2 in normal liver,
but not in fatty liver [18].

In conclusion, our study conducted on rats shows
that neuroleptics may exert both a direct inhibitory ef-
fect and an indirect one – evoked by chronic treatment
with some neuroleptics (levomepromazine, perazine
and thioridazine), which may be of importance in

vivo. The present data may be useful for the interpre-
tation of the results of pharmacological experiments,
obtained after administration of neuroleptics to rats.
However, we do not know yet to what extent the ob-

tained results may be transposed to humans, since rat
CYP2C11 and human CYP2C9 differ in their regula-
tion. Thus the obtained results may trigger further
studies into clinical aspect.
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