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Abstract:

Depression is a frequent comorbid disorder in Parkinson’s disease (PD) which may precede appearance of its motor symptoms by
several years. Pathomechanisms underlying PD have been suggested to be responsible for the PD-related depression.

The aim of the study was to examine the influence of a partial lesion of striatal dopaminergic terminals on the “depressive-like” be-
havior of rats in the forced swimming test (FS). 6-Hydroxydopamine (6-OHDA) was injected bilaterally into the ventro-lateral re-
gion of the caudate-putamen (CP) (3.75 pg/2.5 ul/side). The locomotor activity and behavior of rats in the FS were measured 2 and
4 weeks after the operation. The lesion extent was analyzed by biochemical and immunohistochemical methods.

Two weeks after the operation, the 6-OHDA-treated rats displayed a prolonged immobility in the FS. This effect disappeared after
4 weeks. The locomotor activity was not influenced by 6-OHDA. Levels of dopamine, DOPAC and HVA were decreased in the nu-
cleus accumbens (NAC) 2 weeks after 6-OHDA but were not changed in the CP, frontal cortex (FCX) and substantia nigra (SN).
No significant effect of 6-OHDA on tyrosine hydroxylase-immunoreactivity in the CP and NAC were found.

The present study indicates that a relatively small lesion of dopaminergic terminals in the ventral striatum, which does not produce
any motor disturbances, may induce “depressive-like ” symptoms.
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Abbreviations: 6-OHDA — 6-hydroxydopamine, BG — back- Introduction

ground, CP — caudate-putamen, DA — dopamine, DL — dorso-
lateral caudate-putamen, DM — dorso-medial caudate-putamen,

DOPAC - 3,4-dihydroxyphenylacetic acid; FCX — frontal cortex;
FS — forced swimming test, HPLC — high pressure liquid chro-
matography, HVA — homovanillic acid, NA — noradrenaline,
NAC — nucleus accumbens, OD — optical desity, PD — Parkin-
son’s disease, SN — substantia nigra, TH — tyrosine hydroxy-
lase, TH-ir — tyrosine hydroxylase immunoreactivity, TOD —
total optical density, VL — ventro-lateral caudate-putamen, VM
— ventro-medial caudate-putamen

Primary motor symptoms of Parkinson’s disease (PD)
(bradykinesia, muscle rigidity, tremor) result from
massive degeneration of dopaminergic neurons of the
nigrostriatal pathway and a dramatic decrease in the
dopamine level in the putamen and caudate nucleus
[10]. However, it is generally accepted that the clini-
cal phase of PD is preceded by a preclinical period
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lasting several years before motor symptoms appear
[20, 27]. Recent neuroimaging studies measuring the
binding of radioligands to dopamine transporter have
indicated that at the very early clinical stages of PD
the density of dopaminergic terminals in the putamen
decreases by 60-65% [31, 32]. PD is a multisystem
disorder where neuropathological degenerative pro-
cesses develop in different brain regions starting in
the olfactory bulbs, medulla oblongata, pons, and
progress to the mesencephalon, limbic system and
primary motor areas of the neocortex [2]. During the
preclinical period of PD some non-motor prodromal
symptoms: autonomic disturbances, olfactory dys-
functions, depression and sleep disorders, may occur
[20, 27]. A strong positive association has been found
between depression and subsequent incidence of PD
[11, 16, 28]. Depressive symptoms, including major
depression, are frequently comorbid in 20-70% of ad-
vanced PD patients and have a great impact on their
quality of life [8, 15, 17, 27, 30]. The above findings
indicate that depression in PD may result directly
from pathomechanisms underlying progression of this
disease and may be used to predict subsequent devel-
opment of motor symptoms. However, mechanisms
underlying depression in PD have not been deter-
mined precisely, yet, degeneration and dysfunctions
of dopaminergic meso-striatal/cortico/limbic, seroto-
nergic and noradrenergic systems have been proposed
to be involved [4, 21, 24, 25].

Clinical observations have been confirmed by animal
studies which showed an appearance of “depressive-
like” behavior in rats whose dopaminergic systems were
lesioned with toxins: 6-hydroxydopamine (6-OHDA),
MPTP, rotenone or lipopolysaccharide (LPS) injected
either into the striatum or substantia nigra, as measured
in the forced swimming (FS), sucrose preference or
learned helplessness tests [3, 26, 29, 35]. Since the intra-
structural injections of the aforementioned toxins did not
impair motor abilities of animals their behavioral effects
seemed to result purely from emotional disturbances [3,
26, 29]. MPTP administered systemically in rats has also
been reported to lower preference for sucrose over wa-
ter, to increase immobility in the FS and to induce sleep
disorders. However, the latter injection, which modeled
the clinical, advanced stage of PD, additionally caused
suppression of locomotion and rearing in an open field
test and a decrease in daily liquid consumption, which
could contribute to the measurements carried out in the
above tests and weaken their interpretation in terms of
“depressive-like symptoms™ [14, 18].
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The aim of the present study was to examine
whether bilateral 6-OHDA injections into the ventro-
lateral region of the caudate-putamen (CP) in a very
low dose in rats induce the “depressive-like behavior”
measured in the FS. The ventro-lateral CP is accepted
to be an equivalent of the putamen in primates and hu-
mans — the structure the most severely affected in PD.
Therefore, lesions of this region have been considered
to model mechanisms of PD in the most appropriate
way [9]. The dose of 6-OHDA chosen in the present
study was lower than those used previously by others
[3, 29, 35] in order to produce a small, well-defined
lesion, which would not result in disturbances in loco-
motor activity of rats and can be a model of depres-
sion in pre-clinical stages of PD.

Materials and Methods

Animals

The experiments were carried out in compliance with
the Animal Experiments Bill of January 21, 2005;
(published in Journal of Laws no. 33/2005 item 289),
and according to the NIH Guide for the Care and Use
of Laboratory Animals. They received also an approval
of Local Ethical Committee. All efforts were made to
minimize the number and suffering of animals used.

Male Wistar rats weighing 300-360 g prior to ex-
periments were kept on a light/dark cycle (12/12 h;
the light on from 7 a.m. to 7 p.m.) with free access to
food and water. All experiments were carried out dur-
ing the light period.

Operations

Under the pentobarbital anesthesia (Vetbutal, Biowet,
Poland; 25 mg/kg, ip) the animals were fixed into the
stereotaxic instrument (Stoelting, USA) and injected
bilaterally with 6-hydroxydopamine (6-OHDA HBr
(Sigma-Aldrich, Poland); 3.75 g (free base)/2.5 pl per
side, dissolved in a 0.2% ascorbic acid solution) or
with solvent into the ventro-lateral region of the CP
(AP: 1.2 mm, L: £ 3.1 mm, V: 7.0 mm from bregma
according to Paxinos and Watson’s atlas [19]. The
injection cannulae were left in place for 60 s to enable
full absorption of the solution. In order to spare
noradrenergic terminals, desipramine (Sigma-Aldrich,
Poland) was administered in a dose of 15 mg/2 ml/kg
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ip 30 min before 6-OHDA injections. To avoid
infections, the rats received an antibiotic (Lincospec-
tin, Pharmacia, Belgium) 24 h before the operation,
on the day of operation and 24 h afterwards.

Behavioral observations

Actometers

Locomotor activity of animals was measured by auto-
matic, computerized actometers for small laboratory
animals (ACTIFRAME-SYSTEM, GERB Elektronik
GmbH, Berlin; designed in co-operation with Dr
J. Wolffgramm and Dr G. Schulze, Institute for Neu-
ropsychopharmacology, Free University of Berlin,
Germany) 14 or 28 days after brain operations. Each
actometer consisted of a Plexiglas cage (40 x 40 x 25 cm)
placed inside two layers of frames bearing 16 x 16
transmitters/sensors (in X and Y direction) of infrared
beams. Transmitters/sensors of the lower frame were
located 4.5 cm and those of the upper one 16.5 cm
above the floor of the cage, respectively. The lower
frame allowed for measurements of horizontal activ-
ity and the upper one — vertical activity of rats. The
ACTIFRAME-SYSTEM was connected with a PC
equipped with a program (ARNO, developed by Dr J.
Wolffgramm, Institute for Neuropsychopharmacol-
ogy, Free University of Berlin), which analyzed raw
data. The following behavioral parameters were
evaluated during each 60-min session: 1) a total dis-
tance travelled (mean cm per minute), 2) a number of
rearing episodes (mean per minute), 3) resting time,
when an animal did not execute any locomotor move-
ments. Stationary movements were allowed. This pa-
rameter represented the mean duration of all resting
periods which started during the analyzed interval.

Forced swimming test

Rats were put individually into a transparent cylindri-
cal tank of 35 cm in diameter and 50 cm in hight filled
with tap water at 25 + 1°C (25 cm deep). The experi-
ment consisted of two sessions: a pre-test (14 or 28
days after operations) and the proper test performed
24 h later (15 or 29 days after operations) which
lasted 15 and 5 min, respectively. During the test the
rat’s behavior was observed and the time of immobil-
ity, climbing and swimming was measured. A rat was
regarded as immobile when floating motionless or
making only small adjustment movements necessary

to keep its head above the water. Climbing was re-
corded when vigorous movements with forepaws di-
rected against the wall of the tank — in and out of the
water were displayed. Swimming was defined as hori-
zontal movements of an animal around the tank. Be-
sides the above-mentioned behaviors, animals spent
some time on diving, head shaking, or keeping verti-
cal position by relatively big and quick movements of
fore- and hind limbs.

Biochemical analyses

Tissue dissection

One day after the completion of behavioral experi-
ments (16 or 30 days after operations) rats were killed
by decapitation. Their brains were rapidly removed and
dissected along the midline into right and left sides.
The left side of the brain was put on a chilled plate and
the caudate-putamen (CP), nucleus accumbens (NAC),
frontal cortex (FCX) and substantia nigra (SN) were
dissected. The tissues were immediately frozen and
stored at —80°C until further procedures were applied.

HPLC

Tissue samples were weighted and homogenized in
ice-cold 0.1 M perchloric acid. Then, homogenates
were centrifuged at 10,000 x g, supernatants were fil-
tered through membrane filters (0.1 wm pore size) and
were injected into HPLC system for determination of
tissue level of dopamine (DA), 3,4-dihydroxyphenyl-
acetic acid (DOPAC), homovanillic acid (HVA) and
noradrenaline (NA). The turnover rate of DA was
measured by ratios of its metabolites to the parent
compound. Chromatography was performed using
a Dionex P580 pump (USA) (flow rate = 0.7 ml/min,
Hypersil-Gold C18 analytical column (3 x 100 mm,
3 pm, Thermo Electron Corp., UK) and an LC-4C
amperometric detector with a cross-flow detector cell
(BAS, IN, USA). The applied potential of a 3 mm
glassy carbon electrode was +600 mV with a sensitiv-
ity of 5 nA/V. The mobile phase was composed of
0.1 M potassium dihydrogen phosphate (adjusted to
pH = 3.5 with orthophosphoric acid), 0.5 mM EDTA,
80 mg/1 1-octanesulfonic acid sodium salt, and a 4%
methanol. The chromatographic data were processed
by Chromax 2005 (Pol-Lab, Warszawa, Poland) soft-
ware run on a personal computer.
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Fig. 1. Localization of cannula tips in frontal sections of the rat caudate-putamen (CP) in reference to bregma according to Paxinos and Watson
[19]. Circles indicate cannulae tips. Numbers indicate anterior planes in mm from the bregma. NAC — nucleus accumbens

Histological analyses

Tissue preparation and staining

Right sides of the brains were fixed in cold 4% para-
formaldehyde for 7 days and cryoprotected in 20%
sucrose solution in phosphate-buffered saline (PBS)
for at least 5 days. The brains were then cut on
a freezing microtome into 30 um frontal sections be-
tween AP =2.4 to 0.6 mm from bregma, according to
Paxinos and Watson [19]. Series of sections for each
group consisted of every 6" section from each brain.
They were cryoprotected in 30% sucrose and 30%
ethylene glycol in PBS and kept at —20 °C until further
analysis. The first series of free-floating sections was
incubated for 48 h at 4°C in primary antibodies
[mouse anti-tyrosine hydroxylase, 1:3000; Chemicon
Int.; Millipore, USA], rinsed in PBS, then incubated
for 30 min in secondary antibodies (anti mouse
biotinylated, 1:200, Vector Laboratories, UK) and
processed using an ABC-peroxidase kit (Vector Labo-
ratories, UK) and 3,3’-diaminobenzidine as a chromo-
gen. The second series of sections was stained with
1% cresyl violet (Sigma-Aldrich, Poland). The
stained sections were dried, dehydrated, cleared in
xylene and cover-slipped in a Permount medium
(Fisher Scientific, USA).

Verification of the placement of cannulae tips

Placements of cannulae tips were examined on striatal
slices stained with cresyl violet and/or tyrosine
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hydroxylase-immunoreactive (TH-ir) (Fig. 1) using
an image analysis system equipped with a camera
(MCID, St. Catharines, Ontario, Canada).

Densitometric estimation of the TH-ir

The optical densities (OD) of slices stained for TH-ir
were analyzed with computer-assisted densitometry us-
ing an image analysis system (MCID, St. Catharines,
Ontario, Canada). The whole CP and NAC on each
slice were outlined and divided into the following re-
gions: dorso-lateral CP (DL), ventro-lateral CP (VL),
dorso-medial CP (DM), ventro-medial CP (VM), core
and shell of NAC (Fig. 2C). The mean total optical
density (TOD) for each subregion was measured. The
background (BG) was measured in the region of the
corpus callosum. The values of OD (in arbitrary units)
for each subregion were obtained by subtracting the
BG from the TOD on each section. The results were
averaged for all slices from the animal.

Statistics

The results of locomotor activity were analyzed by
ANOVA for repeated measures and LSD post-hoc
test. The data of the FS and biochemical data were
analyzed by one-way ANOVA. All statistical calcula-
tions were done using STATISTICA 7.0 Software
(Statsoft, Inc. USA).
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Fig. 2. An influence of the 6-OHDA-induced lesion on the tyrosine
hydroxylase-immunoreactivity (TH-ir) measured densitometrically in
brain slices in the caudate-putamen (CP) and nucleus accumbens
(NAC) 2 and 4 weeks after the operation. (A) Results are shown as
the mean + SEM in arbitrary units of the optical density (OD). The
number of animals per group — n = 7-11. (B) Representative TH-
immunostained sections at the level of the CP and NAC in sham-
operated and lesioned rats. (C) A scheme showing the delineation of
subregions of the CP and NAC. The background (BG) was measured
in the region (shown as a rectangle) of the corpus callosum. DM —
dorso-medial CP, DL — dorso-lateral CP, VM — ventro-medial CP, VL —
ventro-lateral CP
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Fig. 3. Aninfluence of the 6-OHDA-induced lesion on locomotor activity of rats measured in actometers 2 and 4 weeks after the operation. Re-
sults are shown as the mean + SEM. Abscissas — time after the beginning of testing. The number of animals per group - n = 7-11

Results

Behavioral observations

Actometers

6-OHDA administered bilaterally into the CP did not
influence locomotor activity of rats, when measured
2 and 4 weeks after the operation. No difference be-
tween 6-OHDA-treated and sham-operated rats was
found with regard to the total distance travelled,
number of rearing episodes and resting time during
the 60-min experiment (Fig. 3).
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FS

6-OHDA administered bilaterally into the CP pro-
longed the immobility time, but did not influence the
time of climbing and swimming, when measured
2 weeks after the operation. Four weeks after the op-
eration, no influence of the lesion on the behaviors
measured in the FS was noted (Fig. 4).

Histological analyses on the right side of the
brain

Histological analysis showed that cannulae tips were
localized mainly in the CP VL (Fig. 1).
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Fig. 4. An influence of the 6-OHDA-induced lesion on behavior of rats
measured in the forced swimming test (FS) 2 and 4 weeks after the
operation. Immobility, climbing and swimming were measured as the
time spent on a respective behavior during a 5-min observation pe-
riod. Results are shown as the mean + SEM. The number of animals
per group — n = 7-11. Asterisk — a statistically significant (p < 0.05)
difference vs. sham-operated animals (one-way ANOVA)

Densitometric analysis of TH-ir in the CP and
NAC did not discover any statistically significant in-
fluence of 6-OHDA on this parameter 2 or 4 weeks
after the operation (Fig. 2A), although a small de-
crease in staining along the cannula track and in the
surroundings of its tip was visible (Fig. 2B).

Biochemical analyses of DA, its metabolites
and NA in the CP, NAC, SN and FCX on the left
side of the brain

6-OHDA administered into the CP did not influence
levels of DA, DOPAC and HVA in this structure or in
the SN and FCX 2 and 4 weeks after the operation
(Fig. 5). In contrast, levels of DA, DOPAC and HVA
were lowered in the NAC by 61%, 63%, 64%, respec-
tively, only 2 but not 4 weeks after the operation
(Fig. 5). Levels of NA in all structures examined (CP,
NA, SN, FCX) were unchanged, when measured at
the two above mentioned time points (Fig. 5).

Discussion

The present results show that the lesion induced by
6-OHDA injections in the ventro-lateral region of the
CP in rats prolonged immobility time measured in the
FS 2 weeks after the operation but did not influence
the locomotor activity of animals.

The immobility time measured in the FS test is
commonly regarded as a “depressive” sign in animals.
In this test an animal is exposed to “life-threatening”
conditions, learns that it is not able to escape from the
tank filled with water, resigns from the struggle and
freezes immobile. The latter behavior may resemble
depressive reaction of humans to an extensive stress.
Since 1977, when the test has been described by Por-
solt et al. [23], a number of data have shown that the
immobility time is reversed by antidepressant drugs
belonging to different classes [7, 22, 34] which sup-
ports its value as a model of depressive symptoms.
However, execution of the test is dependent on motor
ability of an animal, among other things. Therefore, in
order to exclude a potential influence of motor distur-
bances of rats on their performance of the FS test,
we examined their locomotor activity in very sensi-
tive actometers. We did not find any influence of
the 6-OHDA lesion on different measured parameters
(total distance travelled, number of rearing episodes
and resting time), which seems to support the idea
that the increase in the immobility time in the FS in
lesioned animals resulted from their state of “despair”.
The above mentioned behavior was observed 2 weeks
but disappeared by 4 weeks after the operation.

Careful examination of the lesion extent in 6-OHDA-
treated rats showed a very small decrease in the TH
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Fig. 5. An influence of the 6-OHDA-induced lesion on the levels of dopamine (DA) and its metabolites DOPAC and HVA, as well as
noradrenaline (NA) in different brain structures, measured 2 and 4 weeks after the operation. CP — caudate-putamen, FCX —frontal cortex, NAC
—nucleus accumbens, SN — substantia nigra. Results are shown as the mean + SEM. The number of animals per group —n = 7-11. Asterisk —
a statistically significant (p < 0.05) difference vs. sham-operated animals (one-way ANOVA)

immunoreactivity (the rate-limiting enzyme of DA
synthesis) along the cannula track and in the sur-
roundings of its tip that did not result in any statisti-
cally significant difference either in the CP or NAC.
Interestingly, 6-OHDA injections induced a ca. 60%
decrease in DA, DOPAC and HVA levels in the NAC
2 but not 4 weeks after the operation. These results
may suggest that 6-OHDA disrupted the mesolimbic
dopaminergic innervation of this structure, which par-
alleled in time an increase in the immobility time in
the FS, although no clear evidence for its structural
damage was found. It may be supposed that the above
lesion was compensated for between 2 and 4 weeks
after the operation. The development of compensatory
mechanisms in response to the 6-OHDA-induced de-
generation (especially when the lesion is moderate) is
a well known phenomenon and could be based on an
increase in the DA synthesis in — and release from —
surviving dopamine cells, reduced rate of DA inacti-
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vation, sprouting of axon collaterals [5, 6, 9, 36], and
other processes.

Interestingly, in the present study no changes in the
turnover rates were found either in the CP or NAC
(data not shown), hence, some changes in terminal
density, sprouting, expression and activity of TH are
more probably compensatory mechanisms rather than
alterations in activity of DA metabolizing enzymes.

PD is an age-related neurodegenerative disease.
However, in the present study the dopaminergic toxin
was administered in young animals which is a gener-
ally accepted procedure [3, 26, 29, 35], but may be
considered as weakness of the model. This could be
the main reason of the development of efficient com-
pensatory mechanisms which masked both the neuro-
chemical and behavioral effects of the lesion.

In spite of the fact that tips of our injection cannu-
lae were directed into ventro-lateral region of the CP
we did not find any statistically significant differences
in the level of DA and its metabolites in this structure
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or in the structure of origin of its dopaminergic inner-
vations, i.e., the SN. It may be concluded that the
toxin solution diffused from cannula tips mainly in
the ventro-medial direction towards the NAC. Moreo-
ver, it cannot be excluded that at least a part of the
ventral region of the CP was excised during section-
ing of the tissue and then analyzed together with the
NAC. On the other hand, we did not divide the whole
CP into smaller regions for HPLC analysis and, there-
fore, any potential biochemical alterations confined to
its most ventral part could be attenuated.

In the present study the administration of 6-OHDA
was preceded by a systemic injection of desipramine.
This regimen was intended to destroy only dopaminer-
gic terminals but to spare noradrenergic ones. Our bio-
chemical analysis confirmed that 6-OHDA did not in-
fluence the NA level in regions located close to the
cannulae tips (CP, NAC), as well as in distant struc-
tures (SN, FCX). These results supported the view that
a selective lesion of dopaminergic innervations was
sufficient to trigger “depressive-like” behavior in rats.

NAC together with the most ventral part of the CP
and the striatal elements of the tubercle olfactory, be-
longs, to the so-called “ventral striatum” — a region
associated with limbic structures, such as the amyg-
dala, hippocampus, midline thalamus and certain re-
gions of the prefrontal cortex. “Ventral striatum” is
strongly innervated by dopaminergic mesolimbic
pathway arising from the ventral tegmental area and
projects back to the latter structure [1, 12, 33]. Ana-
tomical connections with the limbic system make the
above region functionally strongly associated with
emotional and motivational aspects of behavior [12].
Ventral striatum has been postulated to be crucial for
depression appearing in PD, since a negative correla-
tion has been found between the binding of radio-
ligand to dopaminergic and noradrenergic transporters
([”C]RTI—SZ) in this region and depression in PD pa-
tients [25].

The present study supports the importance of the le-
sion of dopaminergic innervations of this region for
“depressive-like” symptoms in the animal model. In
agreement with this view, the dopaminergic lesion of the
NAC has been found to suppress an “antidepressive-
like” effect of desipramine in the FS in rats [13]. More-
over, Winter et al. [35] reported the presence of an asso-
ciation between “depressive-like” disturbances observed
in the learned-helplessness test and the magnitude of the
ventral tegmental area lesion.

Summing up, our present study seems to support
the view that already a small lesion of dopaminergic
terminals in the ventral striatum, which may repro-
duce preclinical stages of PD, induces “depressive-
like” behavior in rats. These results may imply that
depression in PD is not only a psychological reaction
to motor disability of patients but results directly from
pathomechanisms of this disease.
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