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Abstract:

The purpose of our experiments was to examine the influence of cholinergic receptor ligands on memory-related behavior in mice

using the elevated plus maze (EPM) test. The EPM test allows the exploration of different memory processes (acquisition and con-

solidation), depending on the time of drug treatment. The time necessary for mice to move from the opened arm to the enclosed arm

(i.e., transfer latency, TL) was used as an index of memory. Our findings reveal that for both the processes of acquisition and consoli-

dation, treatment with nicotine (0.035 or 0.175 mg/kg, free base, sc) shortened TL on the second day of the experiments (TL2), thus

improving memory processes. Treatment with scopolamine (0.3 or 1.0 mg/kg, ip) significantly increased TL2 values, thus impairing

cognitive processes. Moreover, we found that treatment with nicotine, at the non-effective doses used during testing, prevented

scopolamine-induced memory impairment by inducing a decrease in TL2 values. Next, we evaluated the influence of bupropion

(10 or 20 mg/kg, ip), a drug currently used for smoking cessation in humans, on memory-related behavior induced by treatment with

nicotine and scopolamine. An acute injection of bupropion (10 or 20 mg/kg) prior to injection with either nicotine (0.035 mg/kg) or

scopolamine (1.0 mg/kg) significantly prevented nicotine-induced memory improvement or scopolamine-induced memory impair-

ment. Bupropion treatment can diminish the rewarding (dependence-producing) effects of nicotine and also the cognitive effects that

are related to addiction. Our studies further indicate the great involvement of the cholinergic system in memory processes and the po-

tential for the development of more effective pharmacotherapies for memory impairment-like human disorders in which the cho-

linergic pathways have been implicated.
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elevated plus maze, GABA – �-aminobutyric acid, mAChRs –

muscarinic cholinergic receptors, nAChRs – nicotinic choliner-

gic receptors, VTA – ventral tegmental area

Introduction

Diverse findings in the literature have indicated that

dementia is one of many age-related mental problems

and is a characteristic symptom of various neurode-

generative diseases, including Alzheimer’s disease

(AD). One of the pathways of treatment of neurode-

generative disorders involves the cholinergic hy-

pothesis, which predicts that the decline of mental

function in dementia is predominantly related to a de-

crease in cholinergic neurotransmission [17].

Many previous studies in the literature have indi-

cated that there is a strong relationship between the

central cholinergic pathways and learning and mem-

ory. It has been demonstrated that the neurotransmit-
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ter acetylcholine (ACh) is essential for cognitive

function. Previous studies have concluded that there

is a strong correlation between the levels of synaptic

ACh and improvements in cognitive function [17,

21]. The data reveal that the inhibition of the activity

of cholinesterase, an enzyme that breaks down ACh,

leads to increased levels of ACh in the brain, espe-

cially in the two major areas that are involved in cog-

nitive processes (i.e., the central cortex and hippo-

campus). Moreover, dysfunction of the cholinergic

system, a decline in the number of cholinergic neu-

rons in the basal forebrain and a decrease in the activ-

ity of choline acetyltransferase have been observed in

patients with AD. Thus, many of the acetylcholines-

terase inhibitors have been shown to improve per-

formance in several cognitive models in humans and

rodents, whereas anticholinergic drugs have been

demonstrated to impair learning and memory in a va-

riety of experimental paradigms [8, 30].

It has been commonly accepted that there are two

types of cholinergic receptors, muscarinic (mAChRs)

and nicotinic (nAChRs), which mediate the action of

ACh and play important roles in memory processing

[29, 44, 49]. The first clinical trials in patients suffer-

ing from AD revealed that there are no changes in the

number, structure or function of mAChRs, whereas

a significant decrease in nAChRs density was ob-

served, especially in the areas of the central cortex

and hippocampus [34]. Thus, the influence of nAChRs

and mAChRs on memory-related behavior has been

evaluated in many behavioral studies [31, 33].

Based on the results mentioned above, we investi-

gated the influence of cholinergic receptor ligands on

memory-related responses using the recently devel-

oped elevated plus maze (EPM) animal memory

model. The aim of our experiments was to ascertain

whether the acquisition or consolidation processes of

memory were affected by nicotine and scopolamine

using the EPM test. Additionally, based on previous

findings that indicate that bupropion is utilized as

a first-line pharmacotherapy for smoking cessation in

humans and that there is commonality in the molecu-

lar mechanisms and the brain regions involved in drug

addiction and memory-related processes [4], we in-

vestigated the effect of pre-treatment with bupropion

on memory-related responses induced by nicotine and

scopolamine using the EPM test. Our results were in-

terpreted with regard to the role of the cholinergic

system in learning and memory. Our experiments may

contribute to a better understanding of neuronal

mechanisms that are important for the modulation of

memory processes induced by nicotine and scopola-

mine.

Materials and Methods

Animals

Experiments were carried out on naive male Swiss

mice (Farm of Laboratory Animals, Warszawa, Po-

land), weighing 20–30 g. The animals were main-

tained under standard laboratory conditions (12-h

light/dark cycle, room temperature 21 ± 1°C) with

free access to tap water and laboratory chow (Bacutil,

Motycz, Poland) in their home cages and were

adapted to the laboratory conditions for at least one

week. Each experimental group consisted of 7–10

animals. All behavioral experiments were performed

between 8:00 and 15:00 h and were conducted ac-

cording to the National Institute of Health Guidelines

for the Care and Use of Laboratory Animals and the

European Community Council Directive for the Care

and Use of Laboratory Animals of 24 November 1986

(86/609/EEC). All experiments were approved by the

local ethics committee.

Drugs

The following compounds were tested: (–)-nicotine hy-

drogen tartrate (0.035, 0.175 or 0.35 mg/kg, reported in

freebase nicotine weight; Sigma-Aldrich, St. Louis,

MO, USA), scopolamine (0.1, 0.3 or 1.0 mg/kg;

Sigma-Aldrich) and bupropion hydrochloride (10, 20

or 40 mg/kg; Sigma-Aldrich). All compounds were

dissolved in saline solution (0.9% NaCl). Except for

nicotine, the drug doses refer to the salt form. The pH

of the nicotine solution was adjusted to 7.0. Fresh

drug solutions were prepared on each day of experi-

mentation. All agents were administered subcutane-

ously (sc) or intraperitoneally (ip) at a volume of

10 ml/kg. Control groups received saline injections of

the same volume and via the same route of admini-

stration.

�����������	��� 
����
�� ����� ��� ��������� 1373

Memory and cholinergic receptor ligands
����� ���� �� �	




Experimental procedures

Memory-related responses were measured using the

elevated plus maze (EPM) test. The experimental ap-

paratus was shaped like a plus sign and consisted of

a central platform (5 × 5 cm), two open arms (5 × 30 cm)

and two enclosed arms (5 × 30 × 15 cm) opposite to

each other. The whole apparatus was constructed of

dark Plexiglas and elevated to a height of 50 cm

above the floor. Additionally, the EPM test was con-

ducted under dim red lighting.

For the EPM test, the time that the mice took to

move from the open arm to the enclosed arm was used

as an index of learning and memory and defined as

transfer latency (TL). The mice were placed individu-

ally at the end of the open arm facing away from the

central platform. Each group was submitted to the

same procedure twice (the interval between the trials

was 24 h). During the first trial (pretest), the time each

mouse took to move from the open arm to either of

the enclosed arms was recorded as TL1. If the mice

failed to enter the enclosed arm within 90 s, they were

placed at an enclosed arm and permitted to explore

the plus maze for additional 60 s; in these cases, the

TL1 value was recorded as 90 s. For the next trial (re-

tention trial) 24 h later, the test was performed in the

same manner as the first trial, and the TL was re-

corded as TL2. If the mouse did not enter the enclosed

arm within 90 s on the second day, the test was

stopped and the TL2 was recorded as 90 s.

We used the TL2 values as indices of memory and

learning effects. Improvement in memory was charac-

terized by a reduction in the time necessary for the

mouse to move from the open arm to either of the en-

closed arms on the second day relative to the control

group. Impairments in memory and learning were

characterized by increases in these measurements.

The EPM task allowed us to investigate different

stages of memory depending on the time of drug treat-

ment. Thus, administration of a drug before the first

trial (before pretest) should interfere with the acquisi-

tion of information, while administration immediately

after the first trial (after pretest) should affect the pro-

cesses of consolidation. In our experiments, the drugs

were administered 30 min before the pretest or imme-

diately after the pretest, and the effects of each com-

pound on both acquisition and consolidation of mem-

ory were investigated.

Treatment

The first experiment was designed to examine the influ-

ence of nicotine, scopolamine or bupropion on mem-

ory-related responses using the EPM test in mice. Nico-

tine (0.035, 0.175 or 0.35 mg/kg, sc), scopolamine (0.1,

0.3 or 1.0 mg/kg, ip), bupropion (10, 20 or 40 mg/ kg,

ip) or saline was administered 30 min before the first

trial or immediately after the first trial. The second set of

experiments was designed to investigate the influence of

nicotine on memory-related responses induced by sco-

polamine administration. For these experiments, nico-

tine (0.35 mg/kg, sc) or saline was administered 15 min

prior to scopolamine (1.0 mg/kg, ip), and then the mice

were tested 30 min later and re-tested after 24 h. The fi-

nal experiment was designed to examine the influence

of bupropion on memory-related responses induced by

acute nicotine or scopolamine administration. Bup-

ropion (10 or 20 mg/kg, ip) or saline was administered

15 min prior to nicotine (0.035 mg/kg, sc) or scopola-

mine (1.0 mg/ kg, ip), and the mice were then tested af-

ter 30 min and re-tested after 24 h.

Experimental doses and procedures used were cho-

sen according to those commonly used in the literature,

including our previous study, in which we examined

the cognitive effects of nicotine in mice and the inter-

action between nicotine and bupropion [5, 6, 41, 50].

Statistics

The data were expressed as the means ± SEM. For the

EPM test, we measured TL, i.e., the time necessary for

the mice to move from the open arm to either of the en-

closed arms. Statistical analyses were performed using

one- or two-way analysis of variance (ANOVA) for the

factors of pretreatment, treatment and treatment inter-

action. Post-hoc comparison of means was carried out

using Tukey’s test for multiple comparisons, when ap-

propriate. The data were considered statistically sig-

nificant at a confidence limit of p < 0.05.

Results

Across all experiments, the time (in s) that each

mouse took to move from the open arm to either of

the enclosed arms on the first trial (pre-test), i.e., TL1,

did not significantly differ among groups (data not

presented).
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Influence of nicotine, scopolamine

or bupropion on memory-related processes

in the EPM model in mice

One-way ANOVA revealed that the acute sc doses of

nicotine (0.035; 0.175 or 0.35 mg/kg) had a statistically

significant effect on TL2 values [F(3,30) = 6.114; p =

0.0023], with respect to memory acquisition during

the retention trial. Indeed, post-hoc Tukey’s test re-

vealed that mice treated with nicotine, at doses of

0.035 or 0.175 mg/kg, had significantly decreased

TL2 values compared with saline-treated mice, indi-

cating that nicotine improves memory and learning

processes (p < 0.01) (Fig. 1A). Similarly, for memory

consolidation during the retention trial, the mice re-

ceiving acute sc doses of nicotine (0.035, 0.175 or

0.35 mg/kg) had significantly decreased TL2 values

compared to the saline-treated mice ([F(3,27) = 4.245;

p = 0.0140], one-way ANOVA). Indeed, post-hoc Tuk-

ey’s test revealed a statistically significant effect (p <

0.05 for 0.035 mg/kg nicotine; p < 0.01 for 0.175 mg/kg

nicotine) (Fig. 1B), indicating that nicotine, at the

doses used, also improved this stage of memory and

learning processes. For both the acquisition and con-

solidation trials, the highest dose of nicotine (0.35 mg/

kg) did not induce any effect in this paradigm.

The active doses of 0.035 or 0.175 m/kg of nicotine

were chosen for the subsequent experiments involv-

ing the use of bupropion. In addition, the inactive

dose of nicotine 0.35 mg/kg was chosen for the subse-

quent experiments examining the effects of the ad-

ministration of scopolamine to show the antagonistic

effects of nicotine on the amnestic effects of scopola-

mine.

For memory acquisition during the retention trial,

one-way ANOVA revealed that administration of the

acute ip doses of scopolamine (0.1, 0.3 or 1.0 mg/kg)

had a statistically significant effect on TL2 values

[F(3,35 = 8.305; p = 0.0003]. Indeed, treatment with

scopolamine (0.3 or 1.0 mg/kg) significantly in-

creased TL2 values in mice compared to those in the

saline-treated control group (p < 0.05 for scopolamine

0.3 mg/kg; p < 0.001 for 1.0 mg/kg scopolamine,

Tukey’s test) (Fig. 2A), indicating that scopolamine,

at the doses used, impaired the acquisition of memory

and learning. Similarly, Fig. 2B shows that for mem-

ory consolidation during the retention trial, admini-

stration of the acute ip doses of scopolamine (0.1, 0.3

or 1.0 mg/kg) significantly increased the TL2 values

[F(3,36) = 4.498; p = 0.0088, one-way ANOVA] com-

pared to the saline-treated mice. Furthermore, a post-

hoc Tukey’s test revealed a statistically significant ef-

fect caused by treatment with 1.0 mg/kg scopolamine

(p < 0.01) (Fig. 2B), which indicates that scopola-

mine, at the dose used, also impaired this stage of the

memory and learning processes.

The active dose of 1.0 mg/kg of scopolamine was

then chosen for the subsequent experiments examin-

ing the effects of bupropion.

Our data indicate that for both acquisition [F(3,34)

= 1.604; p = 0.2066, one-way ANOVA] and consoli-

dation trials [F(3,33) = 1.404; p = 0.2591, one-way

ANOVA], at any dose tested (10, 20 or 40 mg/kg),

bupropion did not significantly alter the TL2 values in

the EPM test (Figs. 3A and 3B).

The inactive doses of 10 and 20 mg/kg of

bupropion were then chosen for the subsequent ex-

periments with nicotine and scopolamine.
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Influence of nicotine on memory-related

responses induced by scopolamine using the

EPM test in mice

An interesting effect was observed when nicotine

(0.35 mg/kg, sc) was injected 15 min before scopola-

mine administration (1.0 mg/kg, ip). For memory ac-

quisition during the retention trial, two-way ANOVA

revealed that there was a statistically significant effect

caused by nicotine pretreatment [F(1,32) = 9.17, p =

0.0048] and scopolamine treatment [F(1,32) = 5.0, p =

0.0325], but there was not an interaction between

nicotine pretreatment and scopolamine treatment

[F(1,32) = 2.45, p = 0.1271]. However, in this experi-

ment, nicotine, at the dose used, significantly reversed

the impairment of memory provoked by acute injec-

tion of scopolamine, thus resulting in a decreased TL2

time (p < 0.01) (Fig. 4A).

Furthermore, for memory consolidation during the

retention trial, two-way ANOVA revealed a statisti-

cally significant effect caused by nicotine pretreat-

ment [F(1,30) = 6.24, p = 0.0182] and scopolamine

treatment [F(1,30) = 30.93, p < 0.0001], and there was

an interaction between nicotine pretreatment and sco-

polamine treatment [F(1,30) = 13.0, p = 0.0011].

Nicotine significantly reversed the impairment of

memory provoked by acute injection of scopolamine

and caused a decrease in the TL2 time (p < 0.001)

(Fig. 4B).

Influence of bupropion on memory-related

responses induced by nicotine using the EPM

test in mice

Finally, we examined the effects of combined admini-

stration of bupropion and nicotine. For memory ac-

quisition during the retention trial, two-way ANOVA

revealed a statistically significant effect caused by

bupropion pretreatment [F(2,48) = 8.29, p = 0.0008]

and nicotine treatment [F(1,48) = 28.22, p < 0.0001];
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however, there was no interaction between bupropion

pretreatment and nicotine treatment [F(2,48) = 1.97, p

= 0.1501]. Nevertheless, bupropion (10 or 20 mg/kg,

ip) prevented memory improvement after administra-

tion of 0.035 mg/kg nicotine, resulting in an increased

TL2 value (p < 0.05 for 10 mg/kg bupropion, p < 0.01

for 20 mg/kg bupropion) (Fig. 5A).

Similarly, for memory consolidation during the re-

tention trial, two-way ANOVA revealed that there was

a statistically significant effect caused by bupropion

pretreatment [F(2,46) = 4.87, p = 0.0121] and nicotine

treatment [F(1,46) = 10.15, p = 0.0026]; however,

there was no interaction between bupropion pretreat-

ment and nicotine treatment [F(2,46) = 0.23, p =

0.7937]. Treatment with bupropion (10 or 20 mg/kg,

ip) prevented memory improvement after treatment
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with 0.035 mg/kg nicotine, resulting in an increased

TL2 value (p < 0.05 for 10 mg/kg bupropion, p < 0.01

for 20 mg/kg bupropion) (Fig. 5B).

Influence of bupropion on memory-related

responses induced by scopolamine using the

EPM test in mice

For the next experiments, we examined the effects of

combined administration of bupropion and scopola-

mine. For memory acquisition during the retention

trial, two-way ANOVA revealed that there was a sta-

tistically significant effect caused by scopolamine

treatment [F(1,50) = 4.16, p = 0.0466] and an interac-

tion between bupropion pretreatment and scopola-

mine treatment [F(2,50) = 4.67, p < 0.0138], while

there was no effect caused by bupropion pretreatment

[F(2,50) = 1.28, p = 0.2876]. However, bupropion

(20 mg/kg) prevented memory impairment after treat-

ment with 1.0 mg/kg scopolamine, resulting in a de-

creased TL2 value (p < 0.01) (Fig. 6A).

Additionally, for memory consolidation during the

retention trial, two-way ANOVA revealed that there

was only a statistically significant effect caused by an

interaction between bupropion pretreatment and sco-

polamine treatment [F(2,47) = 9.50, p = 0.0003],

while there was no effect caused by scopolamine

treatment [F(1,47) = 0.003, p = 0.9502] or bupropion

pretreatment [F(2,47) = 1.30, p = 0.2809]. However,

bupropion (10 or 20 mg/kg) prevented memory im-

pairment after treatment with 1.0 mg/kg of scopola-

mine, resulting in a decreased TL2 value (p < 0.001

for 10 mg/kg or 20 mg/kg bupropion) (Fig. 6B).

Discussion

The aim of our present research was to estimate the

influence of substances that affect the cholinergic sys-

tem (nicotine and scopolamine) on cognitive effects

(stages of acquisition and consolidation of memory)

using the EPM test in mice. We examined the mecha-

nisms involved in the formation of memory pathways

via evaluation of the impact of bupropion on the pro-

cognitive effects of nicotine and the amnestic effects

of scopolamine. In the present study, we revealed for

the first time that nicotine improved memory and

learning processes during the different stages of mem-

ory (acquisition and consolidation) in mice. In con-

trast, scopolamine impaired those cognitive pro-

cesses. Moreover, we found that bupropion attenuated

nicotine-induced improvements and scopolamine-

induced impairments in memory.

The EPM test was originally developed to estimate

anxiety in rodents [37]. However, it was recently

modified to evaluate spatial learning and memory in

rodents. The parameters measured are not the same:
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the number of entries into the open and closed arms,

the time spent in the open arms for anxiety, and trans-

fer latency (TL), which reflects the time the mice took

to move from the open arm to either of the enclosed

arms for the memory processes.

In the context of our present data, it should be

noted that nicotine can affect both types of parame-

ters, but with our modification of the test, we can fo-

cus on the learning and memory capacity for the spa-

tial configuration of the arms. Our previous experi-

ment [5, 6], as well as other results already published,

demonstrated the effectiveness of the EPM test to

evaluate memory-related behavior in mice and in the

context of pharmacological manipulations of the cho-

linergic system [26, 27, 41, 47].

The great influence of the cholinergic systems on

memory-related processes had been revealed previ-

ously by various experiments and clinical studies.

Some studies have reported that acute nicotine treat-

ment improves memory in rodents [5, 6, 34–36],

while others have reported no effects or even negative

influences of nicotine on cognitive functions [16]. In

contrast, there are numerous pharmacological reports

that have suggested that scopolamine interferes with

memory and cognitive functions in humans [18, 46,

51], and experimental animals [10, 14, 39]. Other

studies have suggested that scopolamine induces

dose-dependent significant decreases in both long-term

memory (explored through the passive avoidance test)

and short-term memory (evidenced in a Y-maze task)

[57] and causes similar degrees of impairment in both

reference and working memory using the models of

the Morris water maze [3] or the novel object recogni-

tion task [14].

Our results in the present study are in accordance

with the data in the literature and our previous re-

search [5, 6], in which the positive influence of nico-

tine on cognitive effects was observed.

The mechanisms responsible for the cognitive im-

provement induced by nicotine or for the cognitive

impairments induced by scopolamine are complex.

Nicotine exerts its behavioral effects through the

nAChRs, which have been implicated in many pro-

cesses, such as learning and memory processes,

reward, antinociception and anxiety [32, 37, 54].

Among all central nAChR subtypes, both the �4�2

combination and the �7 subunits appear to play im-

portant roles in memory-related responses [19, 32]. It

is possible that nicotine treatment results in increased

receptor activity (i.e., upregulation of �4�2 and �7

nAChR expression) in the central nervous system, es-

pecially in the hippocampus, which appears to be an

important target site for the nicotinic effects on mem-

ory function [43, 52].

Although the cholinergic system and the direct in-

teraction between nicotine and the nAChRs play im-

portant roles in nicotine-induced memory-related be-

havior, these effects can also result from the release of

several neurotransmitters. As indicated, through acti-

vation of the presynaptic nAChRs, nicotine induces

the release of ACh, which is essential for cognitive

processes, and also dopamine (DA), �-aminobutyric

acid (GABA), noradrenaline (NA), adrenaline (A), se-

rotonin (5HT) and glutamate [54]. The data in the lit-

erature have shown that dopaminergic mechanisms

affect learning, and brain DA plays a crucial role in

both rewarding and memory-related processes [23,

24]. Dopaminergic neurons from the ventral tegmen-

tal area (VTA) are equipped with both nAChRs and

mAChRs, and systemic or in vitro administration of

nicotine excites dopaminergic neurons in the VTA

[13, 55]. There is copious evidence indicating that the

D1 dopaminergic receptor antagonist SCH 23390, but

not the D2 receptor antagonist sulpiride, increases the

effects of nicotine on passive avoidance learning. In

this context, it is possible that dopaminergic mecha-

nisms, through the D1 receptors, exert negative influ-

ences on the improvement of retrieval induced by nico-

tine [13, 25]. Previous studies have also confirmed that

nicotine has an antiamnestic effect on long-term mem-

ory in rodents with muscarinic, nicotinic or dopaminer-

gic D2 receptor blockade [1, 23, 24].

We are unable to explain the mechanism underly-

ing cognitive impairments induced by scopolamine

without further analysis of this phenomenon [28].

Scopolamine is an anticholinergic drug that antago-

nizes the mAChRs (subtypes: M1 and M2). In par-

ticular, this drug is quite selective for M1 receptors,

potentially indicating that impairments of cognitive

processes are associated with the blockade of

mAChRs in the basal forebrain regions. Therefore, it

is possible that cholinergic transmission through the

mAChRs is important for synaptic plasticity and

memory processes. It has been well documented that

the effects of scopolamine may affect both mAChRs

and nAChRs [45].

It is particularly important to note in our present

study that cholinergic transmission through both

mAChRs and nAChRs is important for synaptic plas-

ticity and memory processes. We also investigated

�����������	��� 
����
�� ����� ��� ��������� 1379

Memory and cholinergic receptor ligands
����� ���� �� �	




the effects of nicotine on cognitive functions in mice

treated with scopolamine to block mAChRs. Our data

reveal that nicotine, at the dose that is ineffective in

the test used, prevented scopolamine induced memory

impairment, thus confirming that both mAChRs and

nAChRs play a role in memory processing [20, 33]. In

addition, extensive work performed in rats suggests

that acetylcholinesterase inhibitors, such as metrifo-

nate, physostygmine, tacrine, rivastigmine and done-

pezil, are able to reverse the scopolamine-induced

deficit in spatial memory in the radial arm maze, the

Morris water maze and the passive avoidance tests,

thereby indicating that this cognitive deficit has a cho-

linergic nature [7, 12, 56].

Finally, consistent with previous results that dem-

onstrated the influence of bupropion on the nicotine

response [6], we evaluated the effects of bupropion on

memory-related responses induced by nicotine and

scopolamine. The results from our experiments indi-

cated that bupropion was able to attenuate both the

antiamnestic effect induced by nicotine and the am-

nestic effect induced by scopolamine in the acquisi-

tion and consolidation trials.

Bupropion is an atypical antidepressant drug that al-

leviates the symptoms of nicotine withdrawal in hu-

mans, such as irritability, depression and difficulty in

concentration [48]. Additionally, in animal models of

nicotine addiction, an acute administration of bupropion

decreases nicotine self-administration [53] and re-

duces somatic signs of nicotine withdrawal in rats, in-

cluding teeth chattering, gasping, writhing, tremors,

chewing and ptosis [9], and memory-related re-

sponses induced by nicotine [50].

The mechanisms of action through which bupro-

pion produces its therapeutic effects and the effects of

the combination of bupropion with other agents and

are not completely understood [11, 40]. Many studies

have suggested that the effectiveness of bupropion in

the treatment of tobacco dependence is independent

of its antidepressant properties [22]. The data in the

literature have shown that the action of bupropion is

mediated by two different mechanisms. The central

mechanism is based on the inhibition of the re-uptake

of monoamines, especially DA and NA. Moreover,

this drug enhances dopaminergic activity in the meso-

limbic system [2]. Because a D1 dopaminergic recep-

tor antagonist, SCH 23390, and a D2 dopaminergic

receptor antagonist, sulpiride, decreased bupropion-

induced sniffing, it can be speculated that both D1

and/or D2 dopamine receptor mechanisms are in-

volved in the response of bupropion [25]. Other data

have indicated that bupropion induces a dose-

dependent attenuation of the spontaneous firing rate

of NA and an increase in serotoninergic firing neu-

rons, without altering the firing rate of dopaminergic

neurons in the mesolimbic/cortical regions [15]. Ad-

ditionally, recently published data have provided

evidence that reserpine, a drug that depletes catecho-

lamines, decreases climbing induced by bupropion,

indicating that bupropion has indirect catecholaminer-

gic effects [42]. Alternatively, the mechanism of ac-

tion of bupropion is mediated by nAChRs. Bupropion

can act as a non-competitive nicotinic-receptor an-

tagonist of rat �3�2, �4�2 and �3�4 ganglionic-type

of nAChRs expressed in a human neuroblastoma cell

line. Therefore, the presynaptic action of bupropion

on the release of monoamines, as mentioned above,

can be nAChR-mediated [50]. Because atropine sig-

nificantly increases bupropion-induced sniffing, it is

likely that the mAChRs exert influence, as well [58,

59]. Therefore, many studies have suggested that the

antagonistic effects of bupropion on the amnestic ef-

fects of scopolamine may be a result of action through

both nAChRs and mAChRs. It should be noted that

the influence of bupropion on the effects induced by

scopolamine is caused by anticholinergic action and

also by the interaction with the serotoninergic or nora-

drenergic systems. Moreover, the influence of bupro-

pion on the effects of nicotine and scopolamine can be

attributed to its major metabolite hydroxybupropion,

which is behaviorally active [38]. However, the inter-

actions of bupropion with scopolamine-induced be-

havior have not been thoroughly investigated. Thus,

more research is still necessary to better understand

the mechanisms influencing the efficacy of bupropion.

Considering that cognitive processes are associated

with similar plasticity as the brain regions involved in

learning and memory processes and that the processes

underlying drug addiction may overlap [4], our results

suggest that bupropion, a drug currently used for

smoking cessation in humans, can alleviate the pro-

cognitive effects closely associated with dependence

as well as the symptoms of nicotine withdrawal. Ad-

ditionally, it is possible to speculate on the interaction

between nAChRs and mAChRs and their influence on

memory processes. Our results are useful because

they increase our knowledge regarding the processes

underlying human cholinergic transmission disorders,

including cognitive dysfunction.
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