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Abstract:

Ezetimibe is the first agent used in hypercholesterolemia treatment known to lower intestinal cholesterol uptake that is able to inhibit

NPC1L1 transport proteins in the brush boarder of enterocytes and macrophages. Furthermore, it demonstrates anti-inflammatory

and immunomodulatory properties and influences the expression of certain antigens. The drug is rapidly absorbed from the gastroin-

testinal tract and is then glucuronidated to form the active metabolite. It also undergoes extensive enterohepatic circulation. Various

genetic polymorphisms seem to influence the pharmacokinetics of ezetimibe with different effects. The drug also presents a complex

impact on cytochrome P450 enzymes, as it is a metabolism-dependent inhibitor of CYP3A4. Ezetimibe does not demonstrate any

clinically significant interactions with statins, fibrates, mipomersen sodium, levothyroxine or lopinavir. However, its effect in con-

junction with cyclosporine is not neutral. The use of this cholesterol absorption inhibitor has been shown to be safe and effective

among patients after cardiac, renal and liver transplants, as well as in HIV patients.
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Abbreviations: ApoB-100 – apolipoprotein B-100, ApoE –

apolipoprotein E, AUC – area under the curve, CHD – coronary

heart disease, C��� – peak plasma concentration (maximal con-

centration) , CPK – creatine phosphokinase, CRP – C-reactive

protein, CYP – cytochrome P-450, CYT – cytochrome, F –

bioavailability, HAART – highly active antiretroviral therapy,

HDL – high-density lipoprotein, HIV – human immunodefi-

ciency virus, HLM – human liver microsomes, HMG-CoA –

3-hydroxy-3-methylglutaryl-CoA, hsCRP – high-sensitivity

CRP, IC�� – half maximal inhibitory concentration, IDL – inter-

mediate-density lipoprotein, LDL – low-density lipoprotein,

MRP – multidrug resistance protein, NADPH – reduced nicotina-

mide adenine dinucleotide phosphate, NNRTI – non-nucleoside

reverse transcriptase inhibitor, NPC1L1 – Niemann-Pick C1-

Like 1 transporter, OATP – organic anion transporting polypep-

tide, ox-LDL – oxidized LDL, P-gp – P-glycoprotein, PI – pro-

teinase inhibitor, RNA – ribonucleic acid, T��� – time of maximal

concentration, UDP – uridine diphosphate, UGT – uridine diphos-

phate glucuronosyltransferase, V – volume of distribution, VLDL

– very low-density lipoprotein

Introduction

Hypercholesterolemia, which manifests as an in-

creased level of low-density lipoproteins (LDL), re-
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sults in an elevation of the risk of coronary heart dis-

ease (CHD), leading to a rise in fatal cardiovascular

events [16, 53]. Multiple investigations indicate that

hypercholesterolemia is a crucial factor in atheroscle-

rosis. The elevated cholesterol levels correlate with

the increased risk of death from CHD [69], and deter-

mining the appropriate treatment remains essential

given that this disease is becoming the major cause of

morbidity in developed countries [53].

For the most part, the first choice drugs in hyper-

cholesterolemia treatment are the 3-hydroxy-3-meth-

ylglutaryl-CoA (HMG-CoA) reductase inhibitors –

statins like simvastatin, atorvastatin, lovastatin, pra-

vastatin, fluvastatin and rosuvastatin. Others are fi-

brates, including fenofibrate, clofibrate, and gemfi-

brozil, as well as bile acid sequestrants and niacin,

which are used depending on the type of hyperlipide-

mia. Nonetheless, these drugs are often insufficient

for lowering cholesterol levels [28]. High-dose statin

therapy often results in hepatotoxicity and myopathy,

and the risk/benefit ratio needs revision. The safety of

both fibrate administration and coadministration with

statins is also a point to consider [23]. In this view, an

expansion of the effective ways of managing hyper-

cholesterolemia appears crucial. The solution may be

found in the cholesterol absorption inhibitor ezetimibe

[28], 1-(4-fluorophenyl)-3(R)-[3-(4-fluorophenyl)-3(S)-

hydroxypropyl]-4(S)-(4-hydroxyphenyl)-2-azetidinone

(Fig. 1), which has been applied in the combinatory

treatment of familial and non-familial hypercholes-

terolemia and in the adjunctive monotherapy of ho-

mozygous familial sitosterolemia [31].

Main mechanism of action

Ezetimibe was discovered as an active and potent me-

tabolite of Schering-Plough’s SCH48461 substance

after extensive structure-activity relationship research

[53]. It is a strong inhibitor of cholesterol and phy-

tosterol absorption [9], lowering plasma cholesterol in

humans by 15–20% [22]. Nevertheless, for a long

time the mechanism of ezetimibe action has remained

vague. Radioligand binding investigations indicated

that the direct target of ezetimibe is a Niemann-Pick

C1-Like 1 transporter (NPC1L1) [22]. The NPC1L1,

located in the brush border of enterocytes, is a critical

protein in cholesterol transmembrane transport in the

small intestine [3, 17]. Ezetimibe binds to its extracel-

lular loop and blocks sterol absorption [17]. In com-

parison, bile acid sequestrants (BAS), which are posi-

tively charged indigestible resins, bind to negatively

charged bile acids in the intestinal lumen and block

their recirculation, followed by excretion in the feces

and leading to the depletion of the endogenous cho-

lesterol pool [30]. Consequently, the mechanism of

lowering cholesterol absorption cannot be identified

with the one presented by BAS.

Further pharmacodynamic properties of

ezetimibe

Inhibition of oxidized LDL absorption and foam

cell formation in macrophages

According to recent data, ezetimibe interacts with

annexin-2 and caveolin-1, components of an intestinal

sterol transport system, to form a heterocomplex, thus

leading to the inhibition of micellar cholesterol uptake

into enterocytes [64, 67]. The same mechanism has

been observed in human macrophages, which also ex-

press annexin-2, caveolin-1 and NPC1L1. However,

in this type of cell, the expression of NPC1L1 is about

0.3–0.5% of that seen in enterocytes [64]. The drug

molecules specifically bind to the surface receptors,

which are then endocytosed through the classical

pathway. In macrophages loaded with oxidized low

density lipoproteins (ox-LDL), ezetimibe subse-

quently represses LXR/RXR gene lipid induction and

inhibits the expression of apolipoprotein E (ApoE)

1336 �����������	��� 
������ ����� ��� ��������	

Fig. 1. Chemical structure of ezetimibe



and LXR. Ezetimibe dose-dependently decreases ox-

LDL absorption by 50%, specifically and effectively

reducing the formation of foam cells [64].

Anti-inflammatory features

Presently, atherogenesis is regarded not only as a pro-

cess of passive lipid deposition in the vascular wall

but also as an inflammatory process [48, 71]. Inflam-

mation, which involves all of the cellular elements of

the vascular wall, i.e., endothelial cells, myometrial

cells and immune cells, is extensively perceived to be

the major factor in the etiopathology of atherosclero-

sis [76].

Numerous trials have demonstrated that ezetimibe,

used as monotherapy or in combination with statins,

significantly influences the level of blood inflamma-

tion markers; e.g., it reduces the C-reactive protein

(CRP) level [1, 15, 34, 44, 46, 54, 65]. Considering

this property, ezetimibe administered in a standard

dose of 10 mg per day combined with a low dose of

pravastatin (10 mg) is more effective than a high dose

of pravastatin (40 mg) alone [15]. Nevertheless, there

is no significant difference between therapies using

80 mg of simvastatin and 10 mg of simvastatin coad-

ministered with 10 mg of ezetimibe [65]. Despite this,

it has been demonstrated that ezetimibe reduces CRP

levels by 6% compared with placebo, but when added

to statin treatment, it causes a 10% reduction [54].

Comparing daily treatment with 20 mg of simvastatin

to treatment with 10 mg of ezetimibe, the latter proves

to be more effective in reducing the level of CRP.

Ezetimibe and simvastatin improve the Disease Ac-

tivity Score of rheumatoid arthritis, which is a chronic

inflammatory condition resulting in an increased car-

diovascular risk [46].

Overall, it is still unclear whether the reduction of

the CRP level in blood by treatment with ezetimibe is

an important pleiotropic effect itself or if it is related

to the concurrent LDL level decrease [46, 54]. Investi-

gations suggest a weak positive correlation between

changes in CRP and LDL levels, but only in the case

of the addition of ezetimibe to statin therapy [46].

This may demonstrate that the anti-inflammatory ac-

tion may derive from a reduction in LDL.

Ezetimibe also exerts an effect on the endothelium

[1, 44, 46, 65]. The drug was proven to enhance bra-

chial artery flow-mediated vasodilatation (FMD),

which is a metric used to describe endothelial func-

tion [46, 65]. Ezetimibe has also been evaluated in

comparison with another endothelial parameter, the

Rho-associated coiled-coil containing protein kinase

(ROCK), which is increased in vascular inflammation

and endothelial dysfunction. These reports, however,

indicated that high doses of statins have a better effect

than ezetimibe and low doses of statins in combina-

tion. Only high-dose statin monotherapy (40 mg), not

simvastatin (10 mg) plus ezetimibe (10 mg), signifi-

cantly reduced ROCK activity and increased FMD

[44]. In summary, ezetimibe seems to reduce inflam-

mation in combined therapy with statins, but the ef-

fect exerted on endothelial function appears mixed or

unclear [1].

Immunomodulative properties

Cardiac allograft vasculopathy (CAV) is considered to

be the primary cause of mortality in patients living

more than 5 years after cardiac transplantation [72].

CAV, an effect of the development of atherosclerosis,

is a result of hyperlipidemia [35], and thus it is treated

with lipid-lowering agents such as statins. CAV,

moreover, appears to be dependent on T lymphocyte

activity [74]. In particular, it has been demonstrated

that CD4+ lymphocytes infiltrate the vascular walls of

the allografts arteries at a significantly higher rate

[75]. T lymphocytes also play a crucial role in the

progress of atherosclerosis and acute coronary inci-

dents [63].

Having considered these facts, one group investi-

gated the influence of ezetimibe on the immune sys-

tem. After incubating peripheral blood mononuclear

cells with ezetimibe, a significant linear reduction in

the CD3+CD4+ T helper subpopulation as well as in

CD3+CD4+CD45ro+ T memory cells was observed.

Expressed in median values, a 10 mg simulated dose

of ezetimibe diminished the CD3+CD4+ T cell count

from 469 to 358, and a 100 mg simulated dose of

ezetimibe diminished the count to 303 [66]. However,

no significant changes were noticed in either the

CD3+CD8+ T cytotoxic cell count or in the amount of

CD107a, a highly sensitive marker of cytotoxic T cell

degranulation, in comparison with placebo [66].

The above information regarding the decrease in

helper and memory T cells may be of great importance

in transplant patients, as CD4+ lymphocytes play a criti-

cal role in the process of acute graft rejection. Never-

theless, the in vivo reproducibility of these in vitro find-

ings might be affected by the differences in absorption

and biotransformation of the drug. Also, the assump-
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tion that 1 kg of body weight equals 1 liter of volume

of distribution may create a significant error profile.

The in vitro conditions cannot be easily translated into

equivalent conditions in an organism [66].

The influence of ezetimibe on raft-associated

antigens

It has been previously determined that CD13 (amino-

peptidase N), a raft-associated antigen, is a molecular

target of ezetimibe in the enterocytic brush border

membranes [42]. CD13 is also constitutively ex-

pressed in the lipid rafts of monocytes and macro-

phages [49]. Further investigations revealed a signifi-

cant decrease in the expression of the surface raft-

associated antigens CD13, CD16, CD36 and CD64 in

monocyte-derived macrophages cultured with ezeti-

mibe in vitro. Ezetimibe is also likely to cause a redis-

tribution of CD13 from the cell membrane to cyto-

plasmatic vesicles, leading to a major shift in the lo-

calization of CD13 to these structures. In addition to

this effect, the drug was found to reduce the total cel-

lular CD13 concentration [49]. Nonetheless, no sig-

nificant changes regarding CD11b and CD14 expres-

sion were observed [49]. Because the raft-associated

antigens scavenger receptor CD36 and Fc� receptors

CD16 and CD64 are in charge of modified lipoprotein

uptake and phagocytosis, in addition to associating

with CD13, ezetimibe may impair macrophage differ-

entiation and lipid absorption in these cells [49].

Ezetimibe and atherosclerosis

Despite its anti-inflammatory and immunomodulatory

actions, the effect of ezetimibe on carotid artery athe-

rosclerosis has not been documented. In the Ezeti-

mibe and Simvastatin in Hypercholesterolemia En-

hances Atherosclerosis Regression (ENHANCE) trial,

Kastelein et al. did not observe any differences be-

tween the primary end points as measured by changes

in the carotid intima-media thickness (CIMT) be-

tween familial hypercholesterolemic subjects who

were randomly assigned a high dose of simvastatin

(80 mg daily) plus ezetimibe (10 mg daily) or the

same dose of simvastatin plus placebo [33]. Neverthe-

less, this observation, in contrast with the finding of

a significant difference between both groups in the

degree of reduction of plasma LDL cholesterol and

hsCRP, which was more pronounced in the former

group of patients, may be attributed to a small initial

value of CIMT (0.70 mm) [33].

In the Simvastatin and Ezetimibe in Aortic Steno-

sis (SEAS) study, which was a randomized, double-

blind trial involving 1873 patients with mild-to-

moderate, asymptomatic aortic stenosis, the patients

who received 40 mg of simvastatin plus 10 mg of

ezetimibe did not show any significant effect on the

composite end point of death from cardiovascular

causes, aortic valve replacement, nonfatal myocardial

infarction, hospitalization for unstable angina pecto-

ris, heart failure, coronary-artery bypass grafting, per-

cutaneous coronary intervention and nonhemorrhagic

stroke [62]. Although there was a trend toward a re-

duction of ischemic cardiovascular events through

a median follow-up of 52 months, it remains uncer-

tain whether this trend is associated with the action of

ezetimibe or simvastatin [62].

Moreover, in patients with type 2 diabetes and no

prior cardiovascular events who participated in the Stop

Atherosclerosis in Native Diabetics Study (SANDS),

reducing LDL cholesterol levels to aggressive targets

(less than 70 mg/dL) resulted in a regression of CIMT

similar to patients who achieved equivalent LDL cho-

lesterol reductions from a statin alone or statin plus

ezetimibe [20].

Potential for carcinogenicity

The SEAS study reported surprising results consider-

ing the possible carcinogenicity of ezetimibe. It indi-

cated a statistically significant increase in the occur-

rence of cancer in the statin-ezetimibe group com-

pared with placebo at 9.9% vs. 7.0%, respectively, as

well as an increase in cancer deaths at 4.1% vs. 2.5%,

respectively [27]. Prostate and skin cancer were found

to occur most frequently [27]. Nonetheless, despite

the significance of the differences, the percentages

were small, and the causal relationship with the drug

administration does not appear credible. In the pro-

posed carcinogenic mechanism of action, ezetimibe

was supposed to interfere unselectively with the gas-

trointestinal absorption of cholesterol, influencing the

absorption of molecules affecting cancer cell growth

[18, 27].

The larger trials following SEAS, such as the Study

of Heart and Renal Protection (SHARP) and the Im-

proved Reduction of Outcomes Vytorin Efficacy In-

ternational Trial (IMPROVE-IT), refuted the hy-

pothesis of that ezetimibe has carcinogenic properties.
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Both trials demonstrated no increase in cancer inci-

dence in the group treated with ezetimibe and simvas-

tatin [18, 27, 55]. No connection between exposure to

these drugs and an elevation of carcinogenicity was

observed, which suggests the lack of a causal relation-

ship [27]. Nonclinical studies also supported the find-

ings of SHARP and IMPROVE-IT, verifying that

therapeutically used ezetimibe does not present any

carcinogenic hazards to humans [26]. Additionally,

recent findings may even suggest opposite properties

of ezetimibe. In addition to lowering the cholesterol

concentration, ezetimibe was found to increase levels

of the angiogenesis inhibitor thrombospondin-1 in hu-

man prostate cancer xenografts in mice, suppressing

prostate cancer growth by inhibiting tumor angio-

genesis [68].

Pharmacokinetics of ezetimibe

Absorption

The absolute bioavailability of ezetimibe has not been

determined, as the substance is virtually insoluble in

aqueous solvents suitable for intravenous administra-

tion [21]. Ezetimibe is rapidly absorbed from the gas-

trointestinal tract [53] and efficiently biotransformed

into ezetimibe glucuronide [19, 53]. The absorption of

the substance from the intestine was demonstrated to

be a first-order process, described by an absorption

half-life with a range of 0.5 and 0.8 h in a population

model [19]. Because food does not demonstrate any

impact on the extent of absorption of ezetimibe, it can

be administered with or without meals [11, 21]. How-

ever, other investigations revealed that high fat meals

may increase the total bioavailability of ezetimibe by

25–35% [11]. High fat meals were also observed to

increase the peak plasma concentration (C���) by 38%

after oral ingestion of 10 mg of ezetimibe [21].

Ezetimibe glucuronide accounts for the majority of

the total drug concentration in human blood plasma,

including glucuronide conjugated and unconjugated

ezetimibe, reaching 80–90% [53]. A meta-analysis in-

cluding 154 healthy volunteers who were given 10 mg

of ezetimibe orally showed that the C��� of total ezeti-

mibe was 83 ng/ml and that the area under the plasma

concentration-time curve (AUC) was 773 ng × h/ml,

while the relevant values for unconjugated ezetimibe

were 6.0 and 84.0, respectively [36]. The time of

maximal concentration (T���) of conjugated ezetimibe

in plasma was found to be, on average, 2–3 h after ad-

ministration. Soon after, the concentration of both

conjugated and unconjugated ezetimibe rapidly de-

clined, followed by an increase, demonstrating the oc-

currence of multiple peaks due to enterohepatic recy-

cling [19, 53]. The T��� of unconjugated ezetimibe

was found to be between 4–8 h in the above investiga-

tions by Ezzet et al. [19] and about 10 h in the study

by Patrick et al., in which ezetimibe was administered

in a single 20 mg oral dose [53]. In the studies by

Courntey et al. [11] and Reyderman et al. [58] with 10 mg

of ezetimibe administered orally, the time of maximal

concentration of total ezetimibe occurred 1–2 h after

ingestion [11, 58].

In the population model developed by Ezzet et al.

[19] for single and multiple-dose administration, the

C��� of ezetimibe was estimated to occur at 1.3 and

1.4 h, reaching 74 and 131 ng/ml, respectively. The

analysis of the steady-state pharmacokinetics revealed

rapid absorption, with multiple peaks due to enterohe-

patic recycling and its slow elimination given its esti-

mated terminal elimination half-life of 16–31 h. These

investigations demonstrated that, after once-daily dos-

ing, the steady-state concentrations of ezetimibe and

total ezetimibe in plasma are reached after approxi-

mately 10 days [39].

Distribution

The pharmacokinetic profile of ezetimibe is described

as a two-compartment model [19]. Because it ap-

peared that the volume of distribution (V) in the cen-

tral compartment could not be treated independently

from the parameter of bioavailability (F) in the given

model, a relative volume of distribution (V/F) was

used. For the estimations, F was fixed at 1, resulting

in a V/F of 107.5 and 105.3 l for single- and multiple-

dose administration, respectively [19].

In the given population model, the estimated

amount of ezetimibe recycled from the intestine to the

central compartment was found to be 17–20% of the

total amount absorbed, independent of the volume of

distribution [19]. The model revealed that ezetimibe

and its glucuronide derivative are released with bile

from the gallbladder during meals [19]. Other investi-

gations revealed that the plasma peaks corresponding

to enterohepatic recycling were found at about 4–6 h

and 10–12 h, confirming a correlation with meal

times [53].

�����������	��� 
������ ����� ��� ��������	 1339

Ezetimibe – background of clinical efficacy
������� ��	
� � ���



Following ingestion and intestinal absorption,

ezetimibe is glucuronidated, enters portal plasma,

passes through the liver and is returned to the lumen

of the intestine with bile. At this point, ezetimibe glu-

curonide binds to the intestinal wall, with more than

95% of the total drug accumulating there [36].

A high level of ezetimibe and its glucuronide me-

tabolite were observed to bind to human plasma pro-

teins. In the in vitro experiments, the mean protein

binding was 99.5–99.8% and 87.8–92.0% for ezeti-

mibe and ezetimibe glucuronide, respectively [39].

Additionally, the in vivo investigations revealed that

the total ezetimibe protein binding ranged from 93.9

to 94.5% [60].

Biotransformation

In the human organism, ezetimibe undergoes inten-

sive biotransformation (Fig. 2), mainly of phase II,

through which it is transformed into two glucuronides

[24, 53]. The process takes place in the jejunum and

liver, carried out by different isoforms of UDP-

glucuronosyltransferase (UGT) [24]. The main me-

tabolite circulating in human plasma is a phenolic glu-

curonide, formed by 4-hydroxyphenyl group glucu-

ronidation, while the second conjugate – a benzylic

glucuronide – constitutes a trace metabolite. The phe-

nolic conjugate was found to be produced in vitro by

liver microsomes supplemented with UDP-glucuronic
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acid. In contrast, the benzylic derivative was formed

in jejunum microsome cultures [24]. The experiments

revealed that the phenolic glucuronide was conju-

gated by the UGT1A1, UGT1A3 and UGT2B15 iso-

forms, while the benzylic glucuronide is conjugated

by the UGT2B7 isozyme [24].

The cholesterol lowering activity of the phenolic glu-

curonide was found to be comparable with the parent

compound [53]. This derivative accounts for about 90%

of the total ezetimibe [19]. The quantity of the benzylic

conjugate is marginal, reaching about 1% [39].

Other minor metabolites are a ketone derivative,

the oxidative product of phase I biotransformation,

and the 4-hydroxyphenyl glucuronide, which account

for a total of 4.1% of the administered dose. The glu-

curonide of the ezetimibe ketone analogue comprises

about 0.9% of the dose [53].

Excretion

Ezetimibe and its metabolites are excreted mainly

with feces (78%), and only small amounts are found

in urine [53]. In the experiment with radiolabeled

ezetimibe, the amount detected in urine consisted of

approximately 11% of the administered dose [53].

Hypothetically, ezetimibe glucuronide undergoes hy-

drolysis during intestinal transit and biliar secretion

[19, 53]. Due to that process and probable incomplete

ezetimibe absorption, approximately 68.6% of the

dose is excreted as the parent drug via feces after 96 h

[53]. After the 72 h collection, it was found that the

main metabolite detected in urine was ezetimibe glu-

curonide, consisting of approximately 9% of the dose.

A glucuronide ketone derivative of ezetimibe ac-

counted for less than 1% of the dose and was the mi-

nor metabolite excreted in urine [53]. In total, the oc-

currence of the ezetimibe ketone and its glucuronide

amounted to 4.1% in feces and urine together [53].

Altogether, after 240 h, approximately 89% of the

dose was excreted via both mechanisms [53]. Based

on the cumulative amount of the excreted radiocar-

bon, the estimated half-life of ezetimibe was deter-

mined to be approximately 24 h, the same as the

plasma half-life for ezetimibe glucuronide [53]. The

investigations of repeated dose administration re-

vealed that the terminal elimination half-life of ezeti-

mibe was estimated to be from 16 to 31 h [39]. In the

population model, the estimated terminal elimination

half-life was 30 h [19].

Genetic aspects

Influence of cellular transporters

There is ample evidence supporting the idea that the

hepatic extraction of multiple endogenous substances

as well as many drugs (e.g., pravastatin [77]) from the

sinusoidal blood depends on specific protein carriers

such as the organic anion transporting polypeptide

(OATP) [8]. In that light, the influence of OATP poly-

morphisms on ezetimibe pharmacokinetics was inves-

tigated as they relate to the extensive enterohepatic recy-

cling [51]. Experiments with OATP1B3-, OATP2B1-,

and OATP1B1-transfected HEK cells, including the

OATP1B1 variants OATP1B1*1b, OATP1B1*5 and

*15, were carried out to reveal the impact of genetic

polymorphisms on ezetimibe and its glucuronide dis-

position [51]. It was found that ezetimibe glucuronide

inhibited the uptake of bromosulfophthalein, a com-

mon OATP substrate, in all the OATP-transfected

cells investigated, whereas the potency of the parent

ezetimibe was 30–100 times smaller regarding that

process. While ezetimibe glucuronide significantly

accumulated in the cells expressing OATP1B1 and

OATP2B1, diminished accumulation was observed in

OATP1B1 variants *1b and *5 [51].

In the in vivo experiments with single-dose admini-

stration of 20 mg of ezetimibe in participants with

OATP1B1*1b (*1a/*1b, *1b/*1b), a reduction in the

AUC of the drug and a tendency for increased glucu-

ronide exposure was noticed. In *1b/*1b carriers, the

fecal excretion of ezetimibe was significantly low-

ered, while the renal excretion of ezetimibe glucu-

ronide was increased. Similarly, fecal excretion was

decreased in the OATP1B1*5 and *15 variants [51].

In the homozygous *1b variant, hepatocyte extraction

of glucuronide from sinusoidal blood was weaker.

Nevertheless, this led to only a marginal increase in

serum levels due to the compensatory increase of

glomerular glucuronide filtration in the kidneys [51].

The described OATP1B1 polymorphisms were not of

significance regarding the sterol-lowering effect of

ezetimibe [51].

The in vivo studies with healthy volunteers re-

vealed that other transporters, such as the intestinal

uridine diphosphate-glucuronosyltransferases (UGTs)

and the efflux transporters P-glycoprotein (P-gp)

(ABCB1) and multidrug resistance associated protein

2 (MRP2) (ABCC2), are also of great importance re-

garding ezetimibe pharmacokinetics and therapeutic
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effects [50]. In the subjects given rifampin to upregu-

late the previously mentioned transport proteins in the

intestine, markedly decreased AUC values for ezeti-

mibe and its glucuronide derivative were observed

(116 ± 78.1 ng × h/ml vs. 49.9 ± 31 ng × h/ml and 635

± 302 ng × h/ml vs. 225 ± 86.4 ng × h/ml, respec-

tively). The upregulation of the transporters also re-

sulted in increased intestinal clearance of both ezeti-

mibe and ezetimibe glucuronide (2,400 ± 1,560 ml/min

vs. 5,500 ± 4,610 ml/min and 76.6 ± 113 ml/min vs.

316 ± 457 ml/min, respectively) [50]. In effect, the

sterol-lowering action of ezetimibe was almost abol-

ished [50].

The in vitro studies also demonstrated high affinity

of ezetimibe glucuronide for MRP2 and low affinity

for P-gp, while the parent compound ezetimibe is

a high-affinity substrate for both transporters [50].

CYP3A4 inhibition ambiguity

The lack of effect of ezetimibe on cytochrome CYP3A4,

a common enzyme that metabolizes many substances

including most lipid-lowering statins [52, 82], has been

demonstrated. However, recent findings seem to indi-

cate a greater complexity of the problem [52].

In human liver microsomes (HLM), ezetimibe was

found to act as an irreversible, metabolism-dependent

inhibitor of CYP3A4 [52]. After 0.5 h of preincuba-

tion of NADPH-fortified HLM with ezetimibe, an ap-

proximately 100-fold shift of the IC�� value for

CYP3A4 inhibition (from 31 to 0.34 µM) was no-

ticed, comparable to the effect caused by mibefradil,

an antihypertensive drug, which was withdrawn from

the US market due to its strong and prolonged inhibi-

tory action against CYP3A4 [52]. It was also noticed

that in hepatocytes, in the presence of UDP-glucur-

onic acid, both the direct and metabolism-dependent

inhibition of CYP3A4 was decreased. Regarding the

direct effect, the IC�� was about 3-fold higher, chang-

ing from 12 to 37 µM, whereas in the experiments

with preincubation to account for the metabolism-

dependent effect, the IC�� increased about 9-fold,

from 0.24 to 2.1 µM [52].

Considering the above facts, it was concluded that

the system-dependent inhibition of CYP3A4 by ezeti-

mibe is reduced because of the protection emerging

from glucuronidation, which occurs in hepatocytes

but not in NADPH-fortified HLM [52]. To summarize

this data, it can be deduced that hepatocytes are re-

sponsible for the clinical outcome because, for several

drugs, no significant pharmacokinetic effects result-

ing from CYP3A4 inhibition, such as changes in C���

or AUC, are observed [52].

Pharmacokinetic drug interactions

Statins

No clinically significant pharmacokinetic interactions

between ezetimibe and simvastatin [37], atorvastatin

[81], lovastatin [56], fluvastatin [57], rosuvastatin

[13, 41] or pravastatin [39] have been observed. The

C��� and AUC values did not present any significant

alternations for the parental drugs or for their metabo-

lites, such as �-hydroxysimvastatin, ortho-hydroxya-

torvastatin and �-hydroxylovastatin for ezetimibe or

total ezetimibe [37, 41, 56, 57, 81].

However, in case of lovastatin coadministered with

ezetimibe, a decrease in the plasma concentrations of

lovastatin and �-hydroxylovastatin was observed.

These findings, which were unaffected by the dose of

ezetimibe, were not considered clinically significant

[40]. A similar phenomenon was noticed in the inves-

tigation with fluvastatin, but the deteriorated average

AUC of the drug was explained by the small sample

size (n = 8) and high intersubject variability of fluvas-

tatin pharmacokinetics. Therefore, the difference was

evaluated as insignificant [57].

Fenofibrate

The investigations by Kosoglou et al. [38] with 200 mg

of fenofibrate and 10 mg of ezetimibe applied daily

revealed that fibrate pharmacokinetics are not signifi-

cantly affected by the cholesterol absorption inhibitor.

Conversely, the parallel administration of these two

drugs produced a significant increase in the bioavail-

ability of ezetimibe, showing a 64% and 48% eleva-

tion of the C��� and AUC of the drug, respectively.

However, the effect was not considered clinically sig-

nificant due to the flat-dose response and established

safety profile of ezetimibe [38].

Later investigations by Gustavson et al. [25] with

145 mg of fenofibrate and 10 mg of ezetimibe con-

firmed the lack of influence of ezetimibe on the phar-

macokinetics of fenofibrate. Nevertheless, that study
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also indicated that fenofibrate significantly increases

the AUC of both total and conjugated ezetimibe by

43% and 49%, respectively [25].

Gemfibrozil

The experiments with 600 mg of gemfibrozil applied

twice daily and 10 mg of ezetimibe applied once daily

indicated no pharmacokinetic influence on gemfi-

brozil regarding its bioavailability as measured by

AUC. However, gemfibrozil was found to increase

the AUC of ezetimibe and total ezetimibe 1.4- and

1.7-fold, respectively [59]. Nonetheless, these find-

ings were not considered of clinical significance [59].

Mipomersen sodium

Mipomersen sodium is a novel substance being evalu-

ated in phase II/III clinical trials to assess its utility as

an add-on drug to statin therapy for hypercholestero-

lemia. Considering its properties, it is an intrave-

nously administered antisense oligonucleotide formed

of 20mers complementary to human apolipoprotein

B-100 (ApoB-100) messenger RNA, which subse-

quently reduces the translation of the ApoB-100 pro-

tein, the major apolipoprotein of very low-density

lipoprotein (VLDL), intermediate-density lipoprotein

(IDL) and low-density lipoprotein (LDL) [80]. With

respect to AUC values, mipomersen sodium was not

found to cause clinically significant pharmacokinetic

interactions with ezetimibe and vice versa [80].

Levothyroxine sodium

In the simultaneous administration of levothyroxine so-

dium and ezetimibe, the latter did not decrease the hor-

mone’s AUC value. There is no need for separate appli-

cation, as ezetimibe was not found to cause pharmacoki-

netic interactions with levothyroxine sodium [32].

Cyclosporine

Cyclosporine possesses an evidence-based capacity to

raise LDL levels. Many specialists suggest early pro-

phylaxis for hyperlipidemia in patients after trans-

plantation to prevent atherosclerosis and coronary in-

cidents [7]. One of the potential drugs is ezetimibe.

Nonetheless, previous data indicate that the level of

the drug may be 12-fold higher in cardiac transplant

patients receiving cyclosporine and therefore is not

recommended [7]. Later studies brought new results.

In two treatments in healthy subjects with 100 mg of

cyclosporine applied alone (experiment 1) or 20 mg

of ezetimibe administered for 7 days or with 100 mg

of cyclosporine coadministered on day 7 followed by

20 mg of ezetimibe administered alone on the day 8

(experiment 2), the AUC(0-last) and C��� geometric

mean ratios were calculated. The values of the ratios

for treatment 2 vs. 1 were 1.15 and 1.10, respectively.

This indicated that the mean exposure to cyclosporine

in patients chronically receiving ezetimibe was ap-

proximately 15% higher. T��� for cyclosporine was

found to be similar for both treatments [5]. This data

suggests the necessity for monitoring of cyclosporine

levels and caution with this treatment in patients con-

comitantly receiving both drugs [5].

Another experiment, intended to reveal the influ-

ence of the immunosuppressant on ezetimibe pharma-

cokinetics, was carried out on patients after renal

transplantation who were set on steady-state cyclo-

sporine by receiving 75–150 mg of cyclosporine

twice a day and also were administered 10 mg of

ezetimibe (experiment 1). The results obtained were

then compared with previous data on ezetimibe phar-

macokinetics in healthy volunteers (experiment 2).

The values for the geometric mean ratios for AUC(0-

last) and C��� for experiments 1 and 2 were 3.41 and

3.91, respectively [6]. However, due to the lack of

a long-term safety profile for high exposure to ezeti-

mibe, the implication of this result is of unclear clini-

cal significance [6].

Lopinavir

In HIV patients receiving protease inhibitors (PIs), the

increase of triglycerides and cholesterol levels is often

observed, resulting in the of addition lipid-lowering

therapy. In a study assessing potential interactions be-

tween lopinavir and ezetimibe, no alterations in the

level of PIs were detected nor was an enhancement in

side effects noticed [29].

Ezetimibe use in specific populations

Liver transplant patients

As hypercholesterolemia appears to be a common

problem among transplant patients, the safety and ef-

fectiveness of ezetimibe in that group was tested [2].
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The transplant patients were receiving cyclosporine,

tacrolimus, sirolimus, mycophenolate mofetil and oral

predisone immunosuppressants. Their baseline total

cholesterol and LDL values were 236 ± 46 mg/dl and

147 ± 35 mg/dl, respectively. Ten milligrams of ezeti-

mibe daily was added to this regimen, excluding

patients on predisone, who were given 5 mg ezeti-

mibe. After 6 months of ezetimibe therapy, a reduc-

tion in total cholesterol and the LDL fraction was

observed, reaching 208 ± 46 mg/dl and 120 ± 31 mg/dl,

representing an 11% and 18% decrease, respectively.

Furthermore, after 3 and 6 months of therapy with

ezetimibe, 28% and 32% of liver transplant patients,

respectively, achieved the target LDL level of � 100 mg/dl.

Moreover, neither variations in immunosuppressant

levels nor a need to adjust their doses was observed

[2]. In this group of patients ezetimibe has been

shown to be safe and effective, with no interactions

and minor side effects [2].

Cardiac transplant patients

In an investigation among patients after heart trans-

plantation who were given ezetimibe, the lipid pa-

rameters were evaluated after 1 and 12 months of use.

After one year of treatment with 10 mg of ezetimibe

daily, total cholesterol decreased from 235 ± 49 to 167

± 32 mg/dl, the LDL fraction decreased from 137 ± 47

to 89 ± 29 mg/dl, the HDL fraction decreased from 54

± 13 to 51 ± 10 mg/dl and the triglycerides decreased

from 243 ± 187 to 143 ± 72 mg/dl. Ezetimibe was

found to be effective, with no significant alteration in

HDL cholesterol levels in long-term treatment. It did

not demonstrate any renal or liver toxicity or signifi-

cant changes in immunosuppressant pharmacokinet-

ics [12].

However, in spite of the fact of good ezetimibe tol-

erance in cardiac transplant patients it has been ad-

vised to monitor creatine phosphokinase (CPK) levels

[12]. Further experiments confirmed recent findings

regarding the impact of ezetimibe on lipid levels and

minutely evaluated the influence on CPK activity

[43]. A significant asymptomatic elevation in the

CPK level was reported. CPK levels increased by

31.4 ± 8.1 mM in the ezetimibe (10 mg daily) group

in comparison with 1.5 ± 5.0 mM in the placebo

group [43].

Renal transplant patients

In a study in patients after kidney transplantation in

which 10 mg of ezetimibe was coadministered with

10 mg of simvastatin daily for 6 months, there was

a significant reduction in lipid levels. Total choles-

terol decreased by 34.6%, triglycerides by 16% and

LDL cholesterol by 47.6%, allowing 82.5% of the pa-

tients to reach the target level below 100 mg/dl. No

significant changes in the trough calcineurin inhibitor

levels or allograft functions were noticed [79]. Other

investigations also indicated that ezetimibe signifi-

cantly lowered total cholesterol, LDL cholesterol and

triglycerides [45, 61, 73]. During the investigations,

no significant changes in HDL cholesterol [61], prote-

inuria [61, 79], high sensitivity C-reactive protein

level [79], CPK activity [45, 61], amylase level [61],

lactose dehydrogenase level [45], body mass index

[61] or liver and renal function [45, 61] were ob-

served. No important alternations in drug levels and

adverse effects were noticed [45, 61].

It was also found that in patients after kidney trans-

plantation, ezetimibe allows for the stabilization of

mean creatinine clearance [73]. The study suggested

that ezetimibe could ameliorate the decline of renal

function [73].

Ezetimibe with small-dose statin treatment was

found to be safe and effective in controlling dyslipide-

mia in renal transplant patients [45, 61, 79].

HIV-infected patients

Since the introduction of highly active antiretroviral

therapy (HAART), the life expectancy of HIV pa-

tients has extended notably, raising concerns about the

impact of prolonged exposition to metabolic disorders

on their long-term prognosis and outcome [14].

Ten milligrams of ezetimibe daily added to the

maximally tolerated lipid-lowering therapy (defined

as pravastatin, rosuvastatin, atorvastatin, fenofibrate,

niacin and salmon oil) in HIV patients was found to

reduce mean total cholesterol by 21%, mean LDL by

35%, mean triglycerides by 34% and mean apolipo-

protein B-100 by 33%, and it increased mean HDL by

8% [4].

In a study with 10 mg of ezetimibe daily added to

20 mg pravastatin therapy, 61.5% patients reached the

goal of LDL-cholesterol < 130 mg/dl after 24 weeks

of treatment. The patients were simultaneously re-

ceiving antiretroviral proteinase inhibitors (PIs) or
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non-nucleoside reverse transcriptase inhibitors

(NNRTIs), and the decline was irrespective of the

medication type taken. At the same time, the mean

HDL-cholesterol and apolipoprotein A levels increased

significantly [47].

In the study by Stebbing et al. [70], 10 mg of ezeti-

mibe was used either alone or in combination with

statins. The HIV patients were on PI or NNRTI

HAART therapy. After 12 weeks of treatment, a statis-

tically significant 18% reduction in serum total choles-

terol and a 28.9% reduction in serum triglycerides was

observed. There was no difference, regardless of the

type of antiretroviral therapy the patient was receiving.

In addition, the decline was independent of the pres-

ence of statins in the patient’s treatment [70].

Ezetimibe was also investigated in comparative

monotherapy in two HIV patient groups being given

10 mg of the drug or 80 mg of fluvastatin daily. Ezeti-

mibe was observed to reduce the LDL-cholesterol

level by 20%, which is similar to the fluvastatin group

(24%) [10]. In a comparative study with placebo,

where 10 mg of ezetimibe was used as monotherapy,

after 6 weeks a 5.3% decline in LDL level in the ezeti-

mibe group was observed in comparison with the pla-

cebo group, where a 5.5% increase was reported [78].

In all of the treatment schemes, ezetimibe was

found to be effective, safe and well tolerated, due to

the lack of influence on CYT P450, and it presented

a lack of interactions while showing no risk of in-

creasing the antiretroviral toxicity [4, 14, 47, 70]. In

coadministration with other lipid lowering agents [4,

14, 47, 70] as well as in monotherapy, [10, 70, 78]

ezetimibe was efficient in diminishing LDL levels.

Conclusions

Ezetimibe is the first known drug that inhibits choles-

terol absorption from the intestine through blocking

its transport. Often, it is used concomitantly with

statins or fibrates when the latter do not achieve satis-

fying lipid lowering results. The main mechanism of

action includes blocking the transport protein

NPC1L1 in the brush boarder of enterocytes. Based

on the newest findings, ezetimibe inhibits NPC1L1 in

the plasma membranes of macrophages and mono-

cytes, thus lowering the uptake of oxidized LDL. Fur-

thermore, it presents anti-inflammatory properties,

which are crucial for atherosclerosis treatment as it influ-

ences immune cell functions and are also important among

transplant patients. Ezetimibe decreases the expression of

certain raft-associated antigens, causing an impact on

macrophage differentiation and lipid absorption.

Ezetimibe is rapidly absorbed from the gastrointes-

tinal tract with minor influence by food intake. After

absorption, it is quickly metabolized, primarily into

pharmacologically active glucuronide, which then un-

dergoes extensive enterohepatic circulation, which

seems to be correlated with meal time biliary excre-

tion. Both ezetimibe and its glucuronide derivative

are highly bound to plasma proteins. Ezetimibe glucu-

ronide constitutes about 90% of the total ezetimibe

circulating in blood. Ezetimibe is mainly excreted in

the feces and is eliminated from the organism after

about 10 days with an elimination half-life of approxi-

mately 1 day. Genetic polymorphisms have been

proven to have an influence on ezetimibe pharma-

cokinetics. However, this is unrelated to the pharma-

cological sterol-lowering effect. In addition, the effect

of ezetimibe is abolished when transport proteins

were upregulated. Ezetimibe inhibits CYP3A4, but

the effect is metabolism-dependent and is lowered by

glucuronidation in hepatocytes; thus, it does not cause

a significant impact on the pharmacokinetics of

CYP3A4-metabolized drugs.

Ezetimibe does not present any clinically signifi-

cant interactions with statins, fenofibrate or gemfi-

brozil. Furthermore, there is no significant interaction

between ezetimibe and mipomersen sodium, levothy-

roxine or lopinavir. Ezetimibe raises the levels of cy-

closporine, but the significance of this phenomenon

remains unclear.

The drug is effective and safe in patients after

heart, kidney or liver transplantation and well toler-

ated in the treatment of hypercholesterolemia in HIV-

infected patients. It remains a good option in the case

of statin intolerance or insufficiency of action.

Ezetimibe is an important drug in the development

of hypercholesterolemia treatment. Its high effective-

ness combined with a good tolerance among various

groups of patients taking a wide variety of other drugs

strengthens the argument for ezetimibe treatment.
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