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Abstract:

The kynurenine aminotransferases (KATs) KAT I and KAT II are pivotal to the synthesis of kynurenic acid (KYNA), the only known

endogenous glutamate receptor antagonist and neuroprotectant. KAT I and II have been found in avian, rodent, and human retina.

Expression of KAT I in Müller cell endfeet and KAT II in retinal ganglion cells has been documented. Developmental changes in

KAT expression and KYNA concentration in the avian and rodent retina have also been found. Studies of retinal neurodegeneration

have shown alterations in KYNA synthesis in the retina in response to retinal ganglion cell loss. In DBA/2J mice, a model of ocular

hypertension, an age-dependent decrease of retinal KYNA and KATs was found. In the corpora amylacea in the human retina inten-

sive KAT I and II immunoreactivity was demonstrated. In summary, these findings point to the potential involvement of KYNA in

the mechanisms of retinal aging and neurodegeneration.
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t-ACPD – trans-1-aminocyclopentane-1,3-dicarboxylic acid

The kynurenine pathway

Kynurenines, the metabolites of the kynurenine

(KYN) pathway, are believed to play an important

role in the physiology and pathology of the central
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nervous system (CNS) [52, 79]. It has been shown

that kynurenic acid (KYNA), a nonselective antago-

nist of glutamate receptors, has a high affinity for the

glycine site of the N-methyl-D-aspartate (NMDA) re-

ceptor [6, 38]. It has been also documented that

KYNA is a potent, noncompetitive antagonist of the

�7 nicotinic acetylcholine receptor [34]. In addition,

KYNA is a ligand for the orphan G protein-coupled

receptor GPR35, which is predominantly located in

immune cells and the gastrointestinal tract [89].

Endogenous KYNA is produced by the irreversible

transamination of KYN by kynurenine aminotransfe-

rase I (KAT I) [4, 31] and kynurenine aminotransfe-

rase II (KAT II) [27]. The presence of KAT I has been

demonstrated immunohistochemically in the rat brain,

the medulla and the spinal cord [19, 37, 39], whereas

KAT II was first identified by northern blot mRNA

analysis in the human brain [58]. Immunohistochemi-

cal experiments using KAT I and KAT II antibodies

[57, 58] have shown that both enzymes are present in

the inner retina of the adult rat [67]. Recently, the ex-

istence of a third [26, 32, 97] and fourth enzyme [33]

displaying KAT activity was reported. The biochemi-

cal properties of all four KATs were recently reviewed

by Han and coworkers [30].

KYNA in the pathology of the CNS

Abnormal concentrations of KYNA in certain brain

areas and/or cerebrospinal fluid have been recorded in

subjects with several neurological and mental disor-

ders such as Alzheimer’s, Huntington’s and Parkin-

son’s diseases, multiple sclerosis, epilepsy, brain ische-

mia, depression and schizophrenia, and various patho-

physiological consequences of disturbed KYNA me-

tabolism have been hypothesized. For example,

a lowered KYNA level in Parkinson’s disease could

enhance the symptoms of the disease [55], whereas an

increased KYNA level in Alzheimer’s disease could

cause a blockade of NMDA receptors and contribute

to the impairment of memory, learning and cognition

[3]. The role of kynurenines in neurological and psy-

chiatric disorders was the topic of recently published

reviews [21, 49, 54, 61, 90, 94, 98].

Additionally, in vivo experiments have shown that

the reduction of KYNA synthesis in the rat brain by

nonspecific inhibitors can lead to neurotoxicity [86].

It was suggested that the preferential loss of layer III

of the entorhinal cortex after the local injection of

a nonspecific inhibitor of KYNA synthesis may be

a significant factor in the pathophysiology of tempo-

ral lobe epilepsy [18].

The retina is a part of CNS, and glutamate appears

to act as a major neurotransmitter in most types of

retinal neurons [51]. Considering this, it seemed pru-

dent to study the possible role of KYNA in retinal

physiology and pathophysiology.

KYNA content in retinal ontogeny

Immunohistochemical experiments using KAT I and

KAT II antibodies [57, 58] have shown that both en-

zymes are present in the inner retina of the adult rat

[65]. Importantly, KYNA itself was identified and

quantified in the retinas of adult rats [67]. The retinal

KYNA concentration was 99.9 pmol/g wet weight

and was therefore within the same range as in the rab-

bit vitreous body [100, 101]; it was also present in

ranges similar to those observed in the rat, rabbit and

human brain [53, 83].

Moreover, it was found that KYNA is already pres-

ent in the rat and chicken retina at early stages of on-

togeny. The experiments demonstrated changes in the

KYNA content in vascularized rodent and avascular

avian retinas during development. In rats, KYNA con-

centration peaked at birth and was 7 times higher than

the concentration at E20, i.e., approximately 3 days

before birth. During the first 2 weeks of life, KYNA

again decreased markedly. In chickens, retinal KYNA

concentrations measured at E16 were 30% higher

than at E12 and twice as high as at P0. The KYNA

content at P7 and P21 remained largely the same as at

P0 [65] (Fig. 1). These data appear to agree with those

reported by Beal and coworkers. They found that

KYNA concentrations in rat fetal whole brain un-

dergo a significant increase of approximately 4–5 fold

prenatally, declined rapidly at 1 day after birth and

reached adult concentrations at 7 days after birth [5].

In the immature brain, NMDA receptors are crucial

for synapse development [73] and for modulation of

neuronal migration [41]. Therefore, it has been sug-

gested that a high level of the endogenous glutamate

antagonist KYNA in the brain may provide antiexci-

totoxic protection during birth, whereas the swift de-
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cline in KYNA immediately after birth would assure

minimal interference with developmentally essential

postnatal glutamate receptor functions [13]. It has

also been suggested that changes in KYNA availabil-

ity may modulate the function of excitatory synapses

[9]. Because glutamate receptors are already present

at birth and show differences in spatial distribution

and temporal expression in both rat [24, 25] and

chicken retinas [78], it can be hypothesized that

marked changes of KYNA metabolism in the pre- and

postnatal period may modulate glutamate-mediated

synaptogenesis and neurotransmission in the retina.

KAT in retinal ontogeny

In 2003, it was shown that KAT I is present in the

avascular chicken retina during ontogeny and is local-

ized in Müller cell endfeet. KAT I enzymatic activity

measured at E16 was 58% higher than at E12 and

48% higher than at P0. KAT I activity measured at P7

was more or less at the same level as at P0 [68]. Given

that it has been proven that KAT I activity contributes

to the formation of KYNA [27], these data correspond

with a previous finding that KYNA concentrations in

the chicken retina were significantly higher at E16

than at E12 and rapidly decreased to adult levels by

postnatal day 7. Because KAT I enzymatic activity is

high in late embryonic stages, it was suggested that it

can play a neuromodulatory role in the chicken retina

during the late phase of embryogenesis [68].

Next, it has been shown that both KAT I and II are

present in the rat retina during differentiation and that

these 2 enzymes display different patterns of spatial

distribution and temporal expression. The pronounced

expression of both enzymes in early developmental

stages generally paralleled previous results showing

that KYNA, the product of both enzymes, is present

in both vascularized rat and avascular chicken retinas

during development [65]. A high level of expression

of KAT I and II in the retina occurs almost exclusively

within the first 2 postnatal weeks and may be related

to the process of synapse formation in the retina. At

the time of eye opening, approximately P15–P17, the

expression patterns of KAT I and II are already very

similar to those observed in adult retinas [64].

It has been suggested that changes in KYNA may

modulate the function of excitatory synapses [9]. Be-

cause glutamate receptors, which are preferential tar-

gets of KYNA, are already present at birth and show

differences in spatial distribution and temporal ex-

pression in the rat retina [24, 25], developmental

changes in KAT levels and KYNA content may play

a role in glutamate-mediated neurotransmission dur-

ing differentiation. It was documented that excitatory

amino acid (EAA) antagonists can trigger apoptosis in

the developing mammalian brain [59] and that KAT I

plays a role in the regulation of programmed cell

death [15]. Considering these findings, it is conceiv-

able that KAT and KYNA may control apoptosis in

the retina during early development.

The decrease in the cellular expression of both

KATs found in our study during postnatal life may

also be explained by a significant increase in the total

rat retinal content of glutamate during the postnatal

period, synchronous with the generation and matura-

tion of glutamatergic cells [28]. Data exist showing

that glutamate diminishes KYNA synthesis in brain

and retinal slices, and a regulatory influence on en-

dogenous KYNA concentration has been suggested

[85, 99].

Regulation of KYNA synthesis in retinal

slices

It has been demonstrated that retinal slices incubated

in the presence of the KYNA precursor KYN synthe-

size KYNA in a concentration- and time-dependent
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Fig. 1. Scheme depicting KYNA concentration at different develop-
mental stages in the chicken and rat retina. Data are presented as the
percentage of the highest recorded KYNA concentration (100%).
The data in this figure are based on data published in [65]



manner [99]. Similar results were obtained in previ-

ous studies with brain slices [83, 85, 87]. The pres-

ence of KYNA in the incubation medium suggests

that it is freely liberated from cells to the external mi-

lieu. The inhibitory effect of glutamate, aspartate and

NMDA on KYNA synthesis in bovine retinal slices

has also been clearly demonstrated. The most effec-

tive agent was glutamate; aspartate was 10 times less

active, and NMDA exerted an inhibitory effect only at

high mM concentrations [99]. Kainic acid and

2-amino-3-(3-hydroxy-5-methyl-1,2-oxazol-4-yl)propa-

noic acid (AMPA) have turned out to be ineffective

as inhibitors in the retina, spinal cord and cortex [85,

87]. NMDA has been shown to reduce KYNA synthe-

sis in the retina but was ineffective in the spinal cord

and cortex [85, 87]. However, NMDA was tested only

up to a concentration of 0.5 mM in the brain and spi-

nal cord. Although trans-1-aminocyclopentane-1,3-

dicarboxylic acid (t-ACPD) did not affect KYNA syn-

thesis in the retina and spinal cord, it was effective in

the cortex at a comparable concentration [85, 87, 99]

(Tab. 1).

Furthermore, differences in the inhibitory effec-

tiveness of glutamate agonists on KYNA production

in the brain, spinal cord and the retina have been ob-

served. Glutamate was found to inhibit KYNA pro-

duction in the retina, the astrocytes [16] and C6

glioma cells [40]. Aspartate also reduces the forma-

tion of KYNA in brain slices [87]. However, aspartate

in brain slices was only slightly more effective than

glutamate [85, 87]. In contrast, glutamate was 10

times more active in the retina than aspartate. Such

a high susceptibility of retinal KYNA production to

the inhibitory action of glutamate may indicate the

presence of distinct regulatory mechanisms.

KYNA synthesis in response to retinal

ganglion cell loss

The loss of the retinal ganglion cell (RGC) is a hall-

mark of many ophthalmic diseases, including glau-

coma, retinal ischemia and optic neuropathy. Recent

studies have indicated that glutamate affects the RGC

predominantly through NMDA receptors [80]. More-

over, it has been suggested that kainate and AMPA re-

ceptor subtypes may contribute to RGC loss [60, 75].

Thus, because dysfunction of KYNA synthesis in the

brain may be an important factor in neuronal degen-

eration [22, 77], it has been hypothesized that KYNA

is relevant to the mechanisms of RGC loss. Pursuing

this line of thought, it has been reported that the

number of RGCs decreased significantly 2 days after

intraocular NMDA injections. At the same time, reti-

nal KYNA markedly increased to 124% of control

values [66]. It can be speculated that an increase of

KYNA during the initial phases of excitotoxic injury

provides enhanced neuroprotection. This may also be

a factor in endogenous anti-excitotoxic defense

mechanisms in the CNS [88]. Such a lesion-induced

increase in retinal KYNA might result from an en-

hanced influx of blood-borne KYN after compromise

of the blood-retina barrier [29] or from increased

cerebral biosynthesis of KYN at the lesion site [70].

Other factors, such as compounds released from dam-

aged and dying neurons, which are known to play an

active role during the initial period after excitotoxic

insult [45], activated microglia and/or infiltrating

macrophages might also play a role [50]. Interest-

ingly, Ceresoli-Borroni and colleagues reported a dra-

matic increase of striatal KYNA content 2 days after

intrastriatal quinolinate injections [12]. A similar ef-

fect was also observed after intrastriatal ibotenate in-

jection [11].

It has been found that the retinas of NMDA-treated

eyes displayed a marked decrease in the number of

RGCs 7 and 14 days after injection, compared to both

the control and the number observed 2 days after the

NMDA injection. Correspondingly, KYNA concen-

trations decreased to 70% of control values at days 7

and 14 [66]. Given that immunohistochemical studies

have shown preferential localization of KAT II on

RGC, it appears that loss of RGCs might account for

the decrease in retinal KYNA content [66].

In contrast, KYNA content increases in the brain

7 days after the intrastriatal or intrahippocampal ap-
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Tab. 1. Effect of excitatory amino acids on KYNA synthesis in the ret-
ina, brain and spinal cord

Retina Brain Spinal cord References

Glutamate � � � 85, 87, 99

Aspartate � � � 87, 99

NMDA � = = 85, 87, 99

AMPA = = = 85, 87, 99

Kainate = = = 85, 87, 99

t-ACPD = � = 85, 87, 99

� – inhibition; = – no effect



plication of NMDA agonist quinolinate. This has been

attributed to massive gliosis following neuronal cell

death induced by neurotoxin [12, 92]. In the brain,

KAT has been found mainly in glial cells, and it ap-

pears that they are responsible for most KYNA forma-

tion there [69, 81]. In the retina, neuronal damage due

to neurotoxin administration induces reactive prolif-

eration of Müller cells [20]. It can be speculated, how-

ever, that these cells produce only limited amounts of

KYNA, given that they contain KAT I almost exclu-

sively [67], which has optimum activity at the non-

physiological pH of 9.5. This may explain the de-

crease in KYNA concentration in retinas lesioned

with NMDA.

It has been suggested that KYNA deficiency is

causally related to the pathology of excitotoxic brain

diseases [77]. In vivo studies have shown that reduced

KYNA synthesis in the rat brain caused by nonspe-

cific inhibitors can lead to neurotoxicity [35, 86]. On

the other hand, it has been found that an increased

concentration of brain KYNA may be neuroprotec-

tive. In experimental brain ischemia, neuroprotection

was observed following systemic administration of

KYNA [1, 71] or its precursor KYN [56]. Similarly,

systemic KYN administration offers some protection

against NMDA-induced degeneration of RGCs and

also reduces visual discrimination deficits in adult rats

[95].

The neuroprotective properties of KYNA are usu-

ally explained by its ability to block the EAA receptor

functions, but this is still a subject of debate. Under

physiological conditions, KYNA concentrations are

far lower than those required to antagonize the EAA

receptor functions found in in vitro electrophysiologi-

cal studies. However, several studies confirmed that

the increase of endogenous KYNA following the ad-

ministration of its bioprecursor KYN results in bio-

chemical and/or behavioral changes, which can be

functionally linked to the interaction of KYNA with

glutamate receptors or �7 nicotinic receptors [42, 72,

74, 93].

KYNA in a mouse model of glaucoma

Genetically dependent hypertension glaucoma in the

DBA/2J mouse strain was described by John et al.

[36]. These mice develop progressive ocular abnor-

malities, with pigment dispersion, iris transillumina-

tion, iris atrophy and anterior synechia. Nine months

after birth, intraocular pressure was elevated in most

of the DBA/2J mice, and glaucomatous changes, in-

cluding a progressive loss of 40% of RGCs, optic

nerve atrophy and optic nerve cupping, were evident.

John et al. noted that the DBA/2J mice may repre-

sent a useful model for studying the mechanisms of

RGC death and for evaluating strategies of neuropro-

tection against glaucoma [36]. It has also been noted

that this RGC loss model is responsive to pharmacol-

ogical treatment, e.g., RGC loss is blocked by the glu-

tamate antagonist memantine when administered

intraperitoneally [76].

It has been demonstrated that, in the retinas of

DBA/2J mice, KYNA concentrations change during

aging parallel to time-dependent RGC loss [62]. Reti-

nal KYNA concentrations found in both C57BL/6 and

DBA/2J mice in the early stages (3 months) were in

the same range as those observed in rat and chicken

retinas [65]. KAT I and KAT II were also found in the

inner retina in both strains of mice. In the retinas of

3-month-old DBA/2J mice, KYNA concentrations

were similar to those observed in the control animals.

KYNA was markedly decreased in the retinas of

6-month-old animals and amounted to only 60% of

control values by the 11�� month of life. In contrast,

the level of KYNA in C57BL/6 mice did not change

in 3, 6, or 11-month-old animals. It is now assumed

that KYNA concentrations reflect KYNA synthesis,

given that KYNA storage in the brain has not been

documented [83]. Comparing our data with those of

other authors, we found that KYNA decreased by

24% between 3 and 6 months of age and by 46% by

the age of 11 months. Schuettauf and colleagues

found that RGC numbers decreased 16% between

the ages of 3 and 6 months and 56% by the age of

9 months [76]. John and coworkers found a decreased

thickness of the nerve fiber layer in older DBA/2J

mice; however, the authors omitted measurements of

nerve fiber layer thickness, and their qualitative as-

sessments lack a clear age correlation [36]. It has al-

ready been suggested that KYNA deficiency is caus-

ally related to the pathology of excitotoxic brain dis-

eases [77]. Therefore, it seems that the drop in retinal

KYNA synthesis may be a contributing factor in the

mechanisms of RGC loss, independent of increased

intraocular pressure.

In agreement with biochemical findings, immuno-

histochemical experiments also demonstrated that the
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cellular expression of both KAT I and KAT II in the

inner retina decreases more during the aging of

DBA/2J mice than in control animals [62]. Because

immunohistochemical studies have shown a preferen-

tial localization of KAT I and KAT II on Müller cell

endfeet and RGCs, respectively [64, 67], it can be

postulated that KAT malfunction leads to KYNA loss,

which in turn is partially responsible for the RGC

loss.

Glutamate has been shown to diminish KYNA syn-

thesis, and it has therefore been suggested that gluta-

mate has a regulatory influence on endogenous

KYNA contents [87]. Since that time, reports of in-

creased glutamate in the vitreous in spontaneous dis-

orders similar to glaucoma in dogs [8], quail [17] and

in the aqueous humor of rats after optic nerve crush

[96] have been published. It is conceivable that the

decrease of KYNA synthesis observed in the retinas

of DBA/2J mice during aging [62] may be the result

of increased glutamatergic transmission.

The cellular expression of glutamate transporters

has been studied by various researchers to gain new

insights into a possible excitotoxic mechanism of neu-

rodegeneration in the retinas of DBA/2J mice. Given

that high levels of glutamate can be toxic to RGC [46,

48], effective buffering of extracellular glutamate by

retinal glutamate transporters is essential for protect-

ing RGCs.

In conclusion, a decrease of KAT I and KAT II cellu-

lar expression and decrease of KYNA content have been

found in the retinas of DBA/2J mice during aging. Thus,

our results suggest that decreased cellular expression of

KYNA-synthesizing enzymes and KYNA deficiency

may have relevance to the mechanisms of retinal de-

generative diseases such as glaucoma and optic neu-

ropathy.

Selective retrograde transfection of RGC

with oligonucleotides against KAT II

Recently, it has been shown that RGCs can be trans-

fected in a retrograde manner by means of oligonu-

cleotide (ODN) injections into the superior colliculus

in rats [82]. It was found that this method, like in-

travitreal ODN administration, induces downregula-

tion of KAT II expression in RGCs [82]. We observed

downregulation of KAT II expression lasting for up to

7 days after both routes of ODN administration.

The study also demonstrated that the retinal content

of KYNA decreased in a dose-dependent manner, and

a concentration of 100 µM was found to be the most

effective. ODNs of this concentration induced a sig-

nificant decrease of retinal KYNA content [82].

KYNA concentrations measured in the retinas of eyes

injected with scrambled ODN as a control were simi-

lar to those in untreated rat eyes [64]. Retrograde

transfer of specific ODNs induced downregulation of

KAT II expression in RGCs, providing a new method

of RGC transfection. This approach may facilitate the

investigation of retinal gene expression, architecture

and circuitry.

KATs in corpora amylacea in the human

retina and optic nerve

Corpora amylacea (CAm) are homogenous or lami-

nated oval structures frequently found in the brain and

peripheral nerves. In the eye, CAm are observed not

only in the optic nerve head, the nerve fiber layer, and

the ganglion cell layer, but also in the inner plexiform

and inner nuclear layers [43, 91]. Ultrastructurally,

CAm consist of a filamentous tangle within an axonal

swelling [2, 91]. It has been suggested that CAm for-

mation results from impaired axonal flow [47].

CAm are the only structures associated with degen-

eration in the retina and optic nerve that are also visi-

ble by light microscopy. Nevertheless, their nature re-

mains mysterious. To date, only limited data have

been gathered concerning the mechanisms of their

formation.

In CNS, CAm are regarded as a hallmark of aging

and are thought to be associated with neurodegenera-

tion [14]. However, little is known about their role in

normal and pathological circumstances. Studies on

the structure of the CAm have shown that their rich

acid polysaccharide content makes them best demon-

strable by periodic acid-Schiff (PAS) staining. CAm

contain, in addition to glucose polymers, aging, stress,

and proinflammatory proteins [7]. However, previous

studies have emphasized their surprising lack of im-

munoreactivity [44].

Rejdak et al. were the first to demonstrate immuno-

reactivity on the part of KAT I and KAT II in CAm in
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the human retina and optic nerve. CAm expressing

both enzymes were observed in all cases in the retina

and in the prelaminary, laminary and retrolaminary re-

gions of the optic nerve [63]. Various staining patterns

of KAT I were found to depend on the location of

CAm. In general, there was more pronounced staining

in the retrolaminar part of the optic nerve. The immu-

noreactivity of KAT II was less pronounced than that

of KAT I, with no association to the staining variety or

localization of CAm. All CAm-expressing KATs were

found to be PAS-positive, thus demonstrating that

KAT-stained structures are CAm [63]. These findings

in PAS-stained sections agree with previous results re-

ported by Kubota and colleagues [43].

It has been well documented that CAm have no pa-

thognostic significance, although they accumulate un-

der certain conditions and in certain pathological pro-

cesses [44]. Numerous contributing factors have been

suggested for the formation of CAm, such as (1) the

components of degraded cells and (2) metabolites

originating in cerebrospinal fluid, blood, the mesen-

chyma of the pia mater and the adventitia of the vessel

wall [44]. Importantly, hypoxic/ischemic injury has

been shown to potentiate the enigmatic biological

pathway leading to the formation of CAm during ag-

ing. Botez and Rami [7] have speculated that dam-

aged mitochondria and proteins induced de novo or

overproduced during cellular insults may be seques-

tered by CAm. Assuming that the formation of CAm

represents an arrangement for the management of

products escaping normal cell catabolism [10], greatly

increased numbers of CAm in the optic nerve and ret-

ina may reflect increased metabolic activity caused by

repetitive cellular stress [7]; the presence of KAT I

and II in CAm might also suggest a role of those en-

zymes in mechanism(s) of endogenous cellular pro-

tection against insult.

Interestingly, data from some brain studies have

suggested that CAm possess, to some extent, a rela-

tively high affinity for accumulating “protective” sub-

stances (such as Bcl2, AP1, heat shock proteins, etc.),

which may rescue nerve cells from the devastating ef-

fects of ischemia or aging [7, 14, 23]. So far, immuno-

histochemical investigations have demonstrated anti-

tau-2 immunoreactivity in CAm in the retina, optic

nerve and brain tissue [47].

The presence of KATs in CAm in the human retina

and optic nerve suggests that KYNA synthesis may be

involved in the mechanisms of retinal aging and neu-

rodegeneration, which lead to CAm formation. Future

studies will be required to follow this up and provide

a better understanding of the involvement of trypto-

phan metabolism in the development of degenerative

retinal products; this might also result in a better un-

derstanding of the biological role and significance of

CAm.

Summary and Conclusion

The kynurenine aminotransferases (KATs) were found

in the avian, rodent, and human retinas, specifically in

Müller cell endfeet (KAT I) and in retinal ganglion

cells (KAT II). KATs are critical enzymes in KYNA

synthesis. Changes of KAT activity and KYNA con-

centrations are dependent on developmental stage of

rodent and avian retina. Production of KYNA, the

only known endogenous glutamate receptor antago-

nist, in the retina is altered in response to retinal gan-

glion cell loss. In DBA/2J mice, a model of ocular hy-

pertension with progressive loss of retinal ganglion

cells, the activity of KATs and the concentration of

KYNA decrease in an age-dependent manner. In the

human retina, immunoreactivity of KATs was also

found in CAm, the only known structures associated

with degeneration in the retina. In summary, these

findings demonstrate the potential involvement of

KYNA in the mechanisms of retinal aging and neuro-

degeneration.
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