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Abstract:

Dentate granule cell neurogenesis persists throughout life in the hippocampus of mammals. Alterations in this process occur in many
neurological diseases, including epilepsy. Among the different types of epilepsy, the most frequent is temporal lobe epilepsy (TLE).
Therefore, a number of laboratory studies use animal models of TLE to observe the fate of neuronal cells after seizures. Hippocam-
pal neurogenesis is very sensitive to physiological and pathological stimuli. Seizures, as pathological stimuli, alter both the extent
and the pattern of neurogenesis, which is associated with cognitive function. Various alterations in neurogenesis are observed de-
pending on the amount of time that has elapsed after the seizures. In acute seizures, neurogenesis generally increases, whereas in
chronic epilepsy, neurogenesis decreases. Moreover, several methods currently used for the treatment of brain disorders such as TLE
can also have significant impacts on cognitive functions. This review is focused on the recent findings regarding neurogenesis in ani-
mal models of TLE.
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zone, SRMS – spontaneous recurrent motor seizures, SVZ –
subventricular zone, TLE – temporal lobe epilepsy

Introduction

Neurogenesis is a developmental process that in-
volves the proliferation, migration and differentiation

of neuroblasts and the synaptic integrations of new-
born neurons. Proliferation of new cells continues
into old age, even in humans [20]. There are two ma-
jor neurogenic regions in the brain: the dentate gyrus
(DG) of the hippocampus and the subventricular zone
(SVZ) of the brain [38, 44]. The neurogenic cells of
the SVZ may constitute a population of undifferenti-
ated cells that can be recruited after tissue injury [19,
45, 48]. The newly born granule cells in the DG have
been extensively studied over the last several years.
They send axonal projections to their normal target
zone, the mossy fiber pathway [27]. Their dendritic
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trees resemble those of other granule cells, although
some aspects of their dendrites and spines have been
suggested to be immature [51]. Moreover, the newly
born granule cells appear to develop electrophysio-
logical properties similarly to other granule cells [77].
The functional integration of newly born dentate
granule cells into the hippocampal circuitry [35, 60]
and their ability to mediate long-term potentiation in
DG [63] has led to the hypothesis that neurogenesis in
the adult brain may play a key role in learning and
memory [67, 69], as well as cognitive dysfunction in
some diseases, such as temporal lobe epilepsy (TLE),
Alzheimer’s disease and major depressive disorders.
Hippocampal neurogenesis is very sensitive to
physiological and pathological stimuli. Seizures, as
pathological stimuli, alter both the extent and the pat-
tern of neurogenesis, although the overall effects de-
pend on the type of seizure [40].

Animal models of TLE

Epilepsy is one of the oldest and most well-known ail-
ments of the brain, affecting 50 million people world-
wide [58]. According to epidemiological studies, ap-
proximately 70–80% of epilepsy patients achieve re-
mission, but there are still patients who are refractory
to currently available treatments [41, 46, 57].

Understanding the molecular mechanisms associ-
ated with seizure development can be addressed by
dividing all in vivo animal models into two categories:
models of seizures and models of epilepsy. The differ-
ence between these two groups is those models of epi-
lepsy are characterized by multiple spontaneous re-
current seizures (TLE evoked by pilocarpine or kainic
acid), whereas models of seizures are characterized by
generalized seizures in response to a single exposure
to a potent neurotoxin [3, 47]. The inherent distinction
between the two types of models might foster a better
understanding of critical elements in the evolution of
seizures. Among the many different animal models of
epilepsy, the most well known and most frequently
used is TLE. Because human TLE is the most com-
mon type of epilepsy, animal models of this condition
are thought to be some of the best for helping us un-
derstand the problem of epileptogenesis and the neu-
ronal alterations that take place in the brain after con-
vulsions. Several well-characterized animal models of

TLE exist, and they reflect, at least in part, the com-
plex partial seizures observed in patients with TLE
[59]. Administration of chemical convulsants, includ-
ing the glutamate analogue kainic acid (KA) and the
cholinergic agonist pilocarpine (PILO), and electrical
stimulation of the amygdala or hippocampus (kin-
dling model) are the most frequently studied animal
models of TLE. PILO and KA can be systemically or
intracerebrally injected into animals and can rapidly
produce seizures with an acute episode of status epi-
lepticus (SE). The majority of rodents that survive the
initial SE develop spontaneous seizures after a quies-
cent period of several days to several weeks [11]. The
PILO model is well characterized in rats [12, 74] and
in various strains of mice [68, 73]. According to the
results from many different studies, PILO induces
neurochemical alterations in neurons and glial cells,
which in turn change the cellular environment by al-
tering the expression levels of receptors, trophic fac-
tors, enzymes and proteins from cytoskeleton, altering
the phosphorylation of macromolecules, etc. [65]. Ad-
ditionally, cell death associated with prolonged con-
vulsions can result in reactive gliosis. Taken together,
these alterations can cause brain damage and persis-
tent hyperstimulation. The mechanism of seizure in-
duction for the KA model is very similar to the PILO
model. Experimental evidence indicates that KA
causes cell death in the hippocampus, the entorhinal
cortex and the medial thalamic nuclei [5, 6, 64]. The
kindling model involves the repeated application of
a subconvulsive stimulus delivered through a bipolar
electrode implanted into a limbic structure, such as
the amygdala, hippocampus or entorhinal cortex [2].
Pitkanen and Sutula [52] reported neuronal damage,
gliosis, neurogenesis and mossy fiber sprouting after
using the kindling model of epilepsy.

Neurogenesis: basic and new findings

As mentioned in the Introduction, neurogenesis takes
place in specific brain regions throughout life. These
regions are the subgranular zone (SGZ) of the DG in
the hippocampus and the subventricular zone (SVZ)
of the anterior lateral ventricles [21, 22, 44, 72]. Ac-
cording to recent data, newly born neurons from the
SGZ are functionally integrated into the hippocampal
circuitry [53, 79], and they have passive membrane
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properties, action potentials, and functional synaptic
inputs similar to those found in mature granule cells
[78]. The highest level of neurogenesis within the
neurogenic zones occurs during prenatal develop-
ment. However, generation of new neurons in the
adult hippocampus has been one of the most provoca-
tive research topics for the last several years. The in-
terest in neurogenesis in adolescence and adulthood
increased rapidly because of the importance of hippo-
campal function in learning and memory in both the
normal and the diseased/injured brain [40]. Altera-
tions in cognitive function are commonly observed in
TLE, Alzheimer’s disease, cranial irradiation and
traumatic brain injury [1, 16, 17, 54, 56]. Additionally,
methods currently used to treat brain disorders can
also significantly impact cognitive functions [14, 66].

Neurogenesis and acute seizures

Animal studies revealed that there are many condi-
tions that affect the rate of cell proliferation, migra-
tion and differentiation and hence affect the process of
neurogenesis. These changes are usually caused by
environmental and pathological conditions. One of
the most common abnormal conditions that has a sig-
nificant impact on neurogenesis is a seizure. Many
different studies have been performed to identify the
disturbances in neurogenesis based on the types of
convulsions (Tab. 1). Moreover, the same methods
producing seizures can produce different types of
neurogenesis alterations.

Electrical stimulation increases the rate of neuro-
genesis by neuronal depolarization or repetitive dis-

charge [7]. Dramatic increases in neurogenesis were
observed in the SGZ following PILO- and KA-
induced SE [7, 26, 50] or kindling stimulation. Ex-
amination of the hippocampus from young TLE pa-
tients (2 years old) also suggested increased cell pro-
liferation [8]. Although the molecular mechanisms
underlying the seizure-induced increase in neurogene-
sis are unclear, several potential mechanisms have
been proposed:
1. Up-regulation of the factors promoting proliferation
and survival of neurons (including NGF – nerve growth
factor, BDNF – brain-derived neurotrophic factor,
FGF-2 – fibroblast growth factor, and VEGF – vascular
endothelial growth factor) [4, 10, 15, 23, 25, 43].
2. Positive impact of increased levels of the inhibitory
neurotransmitter �-aminobutyric acid (GABA) on the
proliferation of neural progenitors, the migration and
differentiation of neuroblasts, and synaptic integration
of newborn neurons in the DG a short time after a sei-
zure [24].
3. Increase of neurogenesis in the presence of high lev-
els of neuropeptide Y (NPY) [32, 33, 61, 62], which
produces an increase in neural stem cell proliferation
as a consequence of modulation of neuron-restrictive
silencing factor (NRSF) activity [36].

Data from studies over the last several years show
that the altered neurogenesis due to acute seizure ac-
tivity has a strong impact on the development of aber-
rant circuitry [40]. Hippocampal injury in chronic epi-
lepsy may occur as a consequence of acute seizures
that disturb cell proliferation.

Neurogenesis and chronic TLE

In rats, the increased neurogenesis observed after
acute seizures usually returns to basal levels within
2 months after the convulsions [18]. However, in
chronic TLE, which is characterized by high numbers
of spontaneous seizures, hippocampus-dependent
learning and memory deficits are observed, which can
be at least partially linked to decreased neurogenesis
[28]. Significant evidence for reduced neurogenesis in
the KA model of mouse TLE was shown by Kralic
and coworkers [39], who demonstrated a correlation
between decreased neurogenesis and increased astro-
cyte production. Additional studies performed by
Lederberger and colleagues [42] using the KA mouse
model of TLE showed impaired fate commitment
and/or early differentiation of proliferating cells in
the lesioned DG.
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Tab. 1. Neurogenesis after acute seizures (in vivo studies)

Type of seizure Neurogenesis Reference

KA (rats)

KA (rats)

Electrolytic lesions (rats)

Kindling (rats)

KA (rats)

PILO (rats)

Kindling (rats)

PILO (mice)

�

�

�

�

�

�

�

�

[43]

[10]

[23]

[7]

[26]

[15]

[4]

[33]

� increase in neurogenesis, KA = kainic acid, PILO = pilocarpine



The number of spontaneous seizures has a strong
impact on the extent of neurogenesis. Significant al-
terations in the proliferation of neural progenitors and
the migration and differentiation of neuroblasts were
strongly associated with high numbers of spontaneous
seizures. Heinrich and coworkers [30] showed a de-
crease in neurogenesis at 1 week and a virtual loss of
all neurogenesis by 4–6 weeks after the first seizures.
However, the opposite results were shown by Bonde
et al. [9] in the electrically evoked SE rat model: no
changes in neurogenesis (up to 6 months after SE)
were reported. Moreover, no effects on neurogenesis
were observed by Cha et al. [13], who found that the
hippocampus was capable of generating new neurons
several weeks after SE and that recurrent seizures en-
hanced the production of new neurons in a rat PILO
model of epilepsy. Hattiangady and coworkers [29]
showed that in the rat, severely diminished dentate
gyrus neurogenesis in chronic TLE was not associated
with either decreased production of new cells or re-
duced survival of newly born cells in the subgranular
zone and in the granular cell layer. Rather, it was
linked to a dramatic decline in the neuronal fate
choice of newly generated cells. In chronic TLE,
newly born cells differentiated primarily into glial
cells, which was different from the neuronal fate that
was observed in normal animals.

Waldau and colleagues [76] tested the hypothesis
that spontaneous recurrent motor seizures (SRMS) in
chronic TLE could be reduced by grafting neural stem
cells that are capable of adding new GABA-ergic in-
terneurons and glial-derived neurotrophic factor-ex-

pressing astrocytes into the epileptic hippocampus.
They showed that the grafted neural stem cells de-
creased the number of spontaneous recurrent motor
seizures in the rat model of chronic TLE. SRMS were
reduced by 43%, and stage V seizures were reduced by
90%. This evidence confirms that this therapy effec-
tively diminishes SRMS in chronic TLE. Based on the
results obtained from different animal models of epi-
lepsy, we can confirm that decreased neurogenesis de-
pends on the animal model and on the age of the ani-
mal at the time of the initial seizure episode (Tab. 2).

Neurogenesis after administration

of antiepileptic drugs

Nearly 30% of epilepsy patients suffer from refrac-
tory epilepsy and require at least two antiepileptic
drugs (AEDs) in combination. Each additional AED
added to the standard treatment increases the risk of
serious side effects. One very important side effect
may be the alteration of neurogenesis. This can be
very problematic, especially for children, because
neurogenesis is most vigorous at early ages and be-
cause any reduction may cause learning and memory
impairments. Treatment with AEDs takes at least 2–3
years and, in many situations, lasts a lifetime. While
the most desirable effect is the reduction of seizures,
long-term medication with AEDs may affect neuronal
excitability and impair cognition and memory [49].
Reduced neurogenesis is often associated with altera-
tions in some of the hippocampus-dependent cogni-
tive functions [34, 55]. However, seizures are known
to stimulate neurogenesis [37, 50]. This is why the
problem of long-term treatment of epilepsy patients
with AEDs is an important issue with respect to neu-
rogenesis.

Results obtained by Chen et al. [14] using topira-
mate and lamotrigine, two commonly applied second-
generation AEDs, indicated that topiramate but not la-
motrigine promoted aberrant neuron regeneration in
the hippocampus after SE. Similarly to lamotrigine,
levetiracetam suppressed the development of sponta-
neous electroencephalographic (EEG) seizures and
aberrant neurogenesis following KA-induced SE [71].
Moreover, Jessberger and coworkers showed that val-
proic acid (VPA – classical antiepileptic drug and
mood stabilizer) potently blocked seizure-induced
neurogenesis, an effect that appeared to be mainly
mediated by inhibiting histone deacetylases (HDAC)
and normalizing HDAC-dependent gene expression
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Tab. 2. Neurogenesis after chronic spontaneous seizures (in vivo

studies)

Type of seizure Neurogenesis Reference

KA (rats)

PILO (rats)

KA (mice)

KA (mice)

KA (mice)

Electrical stimulation (rats)

KA (rats)

�

�

�

�

�

no change

�

[28]

[13]

[39]

[42]

[30]

[9]

[29]

� decrease in neurogenesis, � increase in neurogenesis, KA = kainic
acid, PILO = pilocarpine



within the epileptic dentate area [36]. Additional stud-
ies performed on VPA indicated that it reduced cell
proliferation in the dentate SGZ and impaired the
ability of treated rats to successfully perform a hippo-
campus-dependent spatial memory test [75]. Moreo-
ver, the NMDA antagonist MK801 and two GABA�

agonists, phenobarbital and diazepam, reduced num-
bers of newly born neurons in the brains of infant rats
[70]. In the DG, many of the newly formed cells dif-
ferentiated toward a neuronal phenotype; phenobarbi-
tal and MK801 significantly reduced the number of
new neurons in that structure [70]. These results
showed that NMDA receptor- and GABA� receptor-
mediated enhancement disturbed cell proliferation
and, in fact, inhibited neurogenesis.

Conclusions

There is no doubt that adult hippocampal neurogene-
sis is very important for proper learning and memory.
It is obvious that defective neurogenesis may contrib-
ute to progressive memory dysfunction [31]. The
most popular animal model of TLE is widely used to
better understand the process of epileptogenesis and
to find the best way to protect neurons. It is very im-
portant for patients suffering from epilepsy to receive
a medication that will be able to stop the process of
epileptogenesis and protect neurons with minimal
side effects, especially learning and memory distur-
bances. Results from animal models show that at
early time points after acute seizures or SE, hippo-
campal neurogenesis and abnormal recruitment of
newly born neurons into hippocampal circuitry in-
creases, whereas the chronic phase of epilepsy is as-
sociated with substantially decreased hippocampal
neurogenesis.

It is difficult to unambiguously determine if the re-
action of increased neurogenesis after seizures in-
creases or decreases the likelihood of epileptogenesis.
However, recent studies have shown that seizure-
induced neurogenesis has a pro-epileptogenic role in
the formation of the epileptic hippocampus. The pro-
cess of epileptogenesis generates ectopic granule cells
that are born after SE and, instead of migrating to the
granule cell layer, migrate to the hilus or to the inner
molecular layer of the DG [48]. This situation is ab-
normal and may be one of the stimuli that induce epi-

leptogenesis. Seizure activity or high levels of inflam-
mation, which are main epileptogenic factors, have
a strong impact on plasticity, migration patterns, mor-
phology and the afferent synapses of the newly born
cells. To answer the question of whether or not
seizure-induced neurogenesis increases or decreases
the likelihood of epileptogenesis, more advanced
studies are necessary. These studies should focus on
the integration of newly born cells into the existing
neuronal network and on how this integration contrib-
utes to the excitability of this network.

Determining the best combination of AEDs is
equally important because they can have a positive
impact on neurogenesis. Therefore, studies concern-
ing the problems of increased neurogenesis in TLE,
learning and memory impairments and mood disor-
ders are essential to better understand seizure devel-
opment and to determine how to stop the process of
epileptogenesis.
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