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Abstract:

The interest in digoxin has recently increased due to the expanding knowledge regarding endogenous cardiac glycosides and a po-

tential oncological application of this drug. Hydrogen sulfide (H2S), a crucial co-modulator of various physiological processes, is in-

volved in the pathophysiology of different disorders and may be useful in the treatment of some diseases. The interaction between

cardiac glycosides and H2S is unknown. The aim of the study is to assess the influence of digoxin on H2S tissue concentrations in

mouse brain, heart and kidney. Thirty male BALB/c mice were given intraperitoneal injections of digoxin at 0.5 mg/kg body weight

(b.w.) per day (group D1, n = 10) or 1 mg/kg b.w. per day (group D2, n = 10). The control group (n = 10) received physiological sa-

line. Free H2S tissue concentrations were measured via the Siegel spectrophotometric modified method. There was a significant,

progressive increase in the H2S concentrations for both the low and high digoxin doses in the brain (7.7% and 8.5%, respectively),

heart (by 6.0% and 22.1%, respectively) and kidney (by 7.6% and 13.0%, respectively). This report shows that digoxin administra-

tion is followed by an increase in the free H2S concentrations in mouse brain, heart and kidney tissues.
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gen sulfide, K��� – ATP-sensitive potassium channels, NO – nitric

oxide, PI3K – phosphoinositide 3-kinase, PKC – protein kinase C

Introduction

Recent studies have shifted the perspective on hydro-

gen sulfide (H�S) from a dangerous industrial and en-

vironmental toxin to a crucial co-regulator of various

physiological processes in mammals [15]. Moreover,

H�S has been shown to be involved in the develop-

ment of different clinical disorders in many branches

of medicine [18]. The importance of H�S is so perva-

sive that several pharmaceutical companies are al-

ready working on H�S-based agents to treat cardio-

vascular diseases and other disorders [24].

Plant extracts containing cardiac glycosides were

used by the ancient Egyptians, Romans and Syrians as

emetics and heart tonics, and medieval warriors added
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it to their arrows to poison targets. In the twentieth

century, cardiac glycosides were established as an im-

portant agent in the treatment of heart failure [21]. In

the era of evidence-based medicine, cardiac gly-

cosides were pushed aside following the release of the

Digitalis Investigation Group results [1]. However,

these compounds were later resurrected with clinical

post-hoc reanalysis (low digoxin concentrations sig-

nificantly reduced mortality and hospitalizations in

chronic heart failure patients) [2, 25]. They are again

extensively researched with new vistas in oncology,

endogenous synthesis (endogenous cardiotonic ster-

oids – CTS) discovery and complex physiological ac-

tions explored [17, 39].

The interaction between cardiac glycosides and en-

dogenous H�S is unknown. The aim of this study is to

assess the influence of digoxin on endogenous H�S con-

centrations in mouse brain, heart and kidney tissues.

Materials and Methods

Animals

Thirty BALB/c strain male mice (8–9 week old indi-

viduals) weighing approximately 20 g were involved

in the study. The animals were housed under standard

laboratory conditions and had free access to water and

food. They were kept at 22–24°C with a light/dark cycle

of 12 h (8 am – 8 pm, and 8 pm – 8 am, respectively).

Study design

An injectable solution of purified cardiac glycoside

digoxin (Digoxin WZF, Polfa Warszawa, Poland) was

used. Intraperitoneal injections of 0.5 mg per kg b.w.

of digoxin (group D1, n = 10) or 1 mg per kg b.w. of

digoxin (group D2, n =10) were given daily for 5 con-

secutive days at the same time of the day (10:00 am)

in 0.2 ml of saline solution. The control group (n = 10)

received physiological saline at the same rate and vol-

ume. The individuals were randomly assigned to each

group. The animals tolerated the applied doses of di-

goxin well and remained in good condition through-

out the duration of the experiment. Measurements of

the free H�S concentrations were performed using the

modified method of Siegel [28, 30].

The study was performed in accordance with the

guidelines for the care and use of laboratory animals

accepted by Bioethical Committee of the Jagiellonian

University Medical College (Kraków, Poland).

Tissue samples preparation

Two hours after the last injection, the animals were

killed by cervical dislocation, and their brains, hearts,

and kidneys were quickly removed, and homogenized

with 0.01 mol/l sodium hydroxide (NaOH) at a ratio

of 1:4 for brain, 1:5 for kidney and 1:10 for heart and

frozen. Then, 50% trichloroacetic acid (TCA) was

added (0.5 ml to 2 g of brain samples in tight capsules

of 3 ml and 0.25 ml to 1 g of heart or kidney sample in

tight capsules of 2 ml), and the suspension was

shaken and centrifuged. Subsequently, 1.5 ml brain

and 0.75 ml heart or kidney supernatant samples were

moved to 2 ml tight capsules with 0.15 ml or 0.075 ml

of 0.02 mol/l N,N-dimethyl-p-phenyldiamine sulfate

in 7.2 mol/l hydrochloric acid (HCl). Then, 0.15 ml or

0.075 ml portions of 0.03 mol/l iron(III) chloride

(FeCl�) in 1.2 mol/l HCl were added, respectively.

After 20 min in darkness, the content was shaken for

1 min with 1 ml of chloroform.

H2S tissue concentration measurements

Absorbance was measured at 650 nm with the Varian

Cary 100 spectrophotometer. A standard curve was

plotted with an iodometrically determined 0.0001 mol/l

sodium sulfide (Na�S) solution. For all groups of the

animals, four concurrent analyses of each tissue type

were performed.

Statistical analysis

Statistical analysis was performed within the R Envi-

ronment using Student’s t-test. Values of p < 0.05 were

considered to be statistically significant.

Results and Discussion

There was a significant progressive increase in the

H�S concentration along with the increasing digoxin

doses as compared to the control group in the brain

(D1 by 7.7%, D2 by 8.5%), heart (D1 by 6.0%, D2 by
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22.1%) and kidney (D1 by 7.6%, D2 by 13.0%). The

free H�S tissue levels are presented in Table 1.

H�S is formed from L-cysteine in several enzy-

matic reactions catalyzed by cystathionine �-synthase

(CBS), cystathionine �-lyase (CSE) and 3-mercap-

topyruvate sulfurtransferase (3MST), in addition to

non-enzymatic pathways in many tissues [27]. Cyto-

plasmatic bound sulfur is postulated to absorb and

store exogenously applied and endogenously pro-

duced H�S, which is then released in the presence of

physiologic concentrations of glutathione and cys-

teine in slightly alkaline conditions. The second form

of sulfur storage is an acid-labile sulfur which resides

in iron-sulfur clusters of non-heme iron sulfur pro-

teins: iron-sulfur complex of enzymes involved in

oxidative phosphorylation localized primarily in mi-

tochondria [14]. The method applied in our experi-

ment determines the free H�S tissue concentrations.

H�S is lipophilic, freely permeates plasma mem-

branes and participates in the sulfhydration of numer-

ous proteins thus altering their function. Sulfhydration

in an important physiological signal and a prominent

post-translational modification [9]. The cardioprotec-

tive action of H�S is comprised of numerous intracel-

lular mechanisms, including adenosine triphosphate

(ATP)-sensitive potassium channels (K���) stimula-

tion, inhibition of L-type calcium channels, an influ-

ence on extracellular signal-regulated protein kinases

(ERKs), phosphoinositide 3’-kinase (PI3K)/Akt (pro-

tein kinase B), and protein kinase C (PKC) [13, 18,

32]. H�S also exerts some anti-inflammatory effects

under certain conditions by reducing the NF-�B com-

plex activation [22, 29]. Moreover, H�S interacts with

the carbon monoxide (CO) and nitric oxide (NO) sys-

tems in a complex manner that includes affecting each

other’s synthesis and biological responses within target

tissues and organs. All three of these gases bind to he-

moglobin and temper mitochondrial oxidative phos-

phorylation by inhibiting cytochrome c oxidase [16].

CTS form a mammalian and human class of het-

erogeneous steroid hormones synthesized in adrenal

glands with the secretion controlled by the hypothala-

mus, midbrain and sympathetic nervous system. This

group includes cardenolides, like ouabain or endoge-

nous digoxin, and bufadienolides, like marinobu-

fagenin, telocinobufagin and 19-norbufalin [11, 26].

CTS target Na�/K�-ATPase as a receptor, and play an

important role in the regulation of renal sodium trans-

port and arterial pressure, cell growth and differentia-

tion, apoptosis, fibrosis, the modulation of immunity

and of carbohydrate metabolism and the control of

various central nervous functions and are believed to

participate in the complex pathophysiology of cardio-

vascular diseases [3]. The action of digoxin and other

cardiac glycosides in heart failure is reportedly based

on the Na�-lag hypothesis. This hypothesis suggests

that the inhibition of Na�/K�-ATPase leads to local

rise in intracellular Na� concentration with a subse-

quent increase in the intracellular Ca�� level resulting

in positive inotropic effects on the myocardium [4].

This concept seems to contradict the modern strategy

of heart failure therapy that is based on avoiding intra-

cellular Ca�� concentration augmentation which ag-

gravates heart failure through altered protein expres-

sion and apoptosis [26]. In addition, other known

mechanisms of cardiac glycosides, including the inhi-

bition of the activated neuroendocrine system, primar-

ily the adrenergic and renin-angiotensin-aldosterone

systems, cannot explain the effects of the hormones in

heart failure [10]. Numerous experiments have shown

that the Na� pump is not necessary for the inotropic

effects of cardiac glycosides [20]. Na�/K�-ATPase

acts as a signalosome located in caveolar structures

that contain different proteins, including membrane

Ca��-ATPase, L-type Ca�� channels, Na�/Ca�� ex-

changer and NO synthase, and interact with the sarco-

plasmic reticulum (SR) peripheral proteins [7]. The

interaction of cardiac glycosides with Na�/K�-ATPase
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Tab. 1. Hydrogen sulfide (H
�
S) concentrations in mouse brain, heart and kidney tissues following the administration of 0.5 mg/kg b.w. per day

or 1 mg/kg b.w. per day digoxin (groups D1 and D2, respectively). The results are presented as the mean values ± SD

H2S tissue concentration
(µg/g)

Control group
(n = 10)

D1
(n = 10)

p
(control vs. D1)

D2
(n = 10)

p
(control vs. D2)

Brain 2.60 ± 0.05 2.80 ± 0.03 p < 0.001 2.82 ± 0.04 p < 0.001

Heart 11.44 ± 0.13 12.12 ± 0.22 p < 0.001 13.97 ± 0.02 p < 0.001

Kidney 6.67 ± 0.06 7.18 ± 0.14 p < 0.001 7.54 ± 0.08 p < 0.001



leads to conformational changes that are recognized

by neighboring proteins, leading to the stimulation of

different pathways of signal transduction, like the Ras-

Raf-MEK-ERK cascade, PI3K/Akt, ERKs, NF-�B

complex, PKC activity and Ca�� as a second messen-

ger [26, 41]. The activation of ERKs and the increase

in intracellular Ca�� concentration result in K���open-

ing [33].

As we have demonstrated, digoxin administration

leads to increases in H�S tissue concentrations, espe-

cially in the heart. H�S has been shown to attenuate

left ventricular dysfunction, prevent malfunctional re-

modeling and reduce mortality in mouse models of

chronic heart failure, which was associated with de-

creased oxidative and proteolytic stress, a reduced

level of apoptosis, fibrosis and mitochondrial dys-

function [6, 19]. Exogenous H�S administration (with

Na�S as a donor) significantly reduced the infarct size

in different murine and rat models of myocardial

ischemia-reperfusion [6, 8]. H�S increases blood flow

in models of permanent ischemia, exerts pro-

angiogenic action, increases endothelial cell growth

and migration, enhances wound healing and induces

neovascularization and collateral vessel growth in pe-

ripheral artery disease, which might play an important

role in chronic heart failure, especially for an

ischemic background [5, 23, 34]. The gasotransmitter

was also protective in ischemia-reperfusion injury in

the kidney [12].

Our study provides evidence that digoxin interferes

with endogenous H�S, resulting in increased tissue

bioavailability. This makes the drug effects even more

complex, given the multidirectional actions of H�S. It

is unknown whether H�S mediates any of digoxin’s

effects or to what extent cardiac glycoside biology is

dependent on the messenger, because research dedi-

cated to this issue has never been done. The interac-

tion mechanisms are obscure, and it is unknown

whether, and in what manner, digoxin affects H�S pro-

duction and/or release. Interestingly, crucial aspects

of physiology, such as blood pressure control, salt me-

tabolism, cardiac function, kidney proliferation and

central nervous functions, are regulated by H�S and

CTS and are affected by digoxin, and the involvement

of other molecular features, like Ca��, NO, ERKs,

PI3K/Akt, PKC, are K��� is common [3, 18, 40]. Fur-

thermore, H�S has been shown to be involved in the

actions of other drugs, including aspirin, the angio-

tensin-converting enzyme inhibitor ramipril, the 3-hy-

droxy-3-methylglutaryl-coenzyme A (HMG-CoA) in-

hibitor atorvastatin and paracetamol [31, 35–38]. Our

results, in combination with the beneficial effects of

H�S in experimental animal models of heart failure

and favorable clinical data regarding digoxin effects

in chronic heart failure, strongly encourage further re-

search into the role of H�S donors and H�S releasing

agents in this disease [24].

In conclusion, exogenous digoxin has an impact on

endogenous sulfur metabolism in different mouse or-

gans, which is reflected by increases in free H�S con-

centrations in mouse kidney, brain and heart tissues.
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