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Abstract:

Heparin displays several types of biological activities by binding to various extracellular molecules, including pivotal roles in bone me-
tabolism. We have previously reported that heparin competitively inhibits the binding activity of bone morphogenic protein-2 (BMP-2)
to BMP and the BMP receptor (BMPR) and suppresses BMP-2 osteogenic activity. In the present study, we examined whether heparin
affects osteoblast differentiation induced by BMP-2 at various time points in vitro. We found that 72 h of treatment with heparin inhib-
ited alkaline phosphatase (ALP) activity. However, 144 h of treatment enhanced the ALP activity in BMP-2-stimulated MC3T3-E1
cells. Although heparin decreased the phosphorylation of Smad1/5/8 after 0.5 h of culture, prolonged periods of culture with heparin en-
hanced the Smad phosphorylation. In addition, 72 h of treatment with heparin enhanced the mRNA expression of runx2 and osterix in
BMP-2-stimulated MC3T3-E1 cells. Furthermore, the mRNAexpression of BMP antagonists and inhibitory Smads induced by BMP-2
was preferentially blocked by heparin at the 24 and 48 h time points. These findings indicate biphasic effects of heparin on BMP-2 ac-
tivity and suggest that heparin has complex effects on the BMP-2 osteogenic bioactivities. Prolonged culture with heparin stimulated
BMP-2-induced osteogenic activity via down-regulation of BMP-2 antagonists and inhibitory Smads.
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Introduction

The extracellular matrix (ECM) provides structural
strength to tissues and helps to maintain the shape of
organs. Proteoglycans, which are characterized by
a core protein with at least one glycosaminoglycan

(GAG) chain attached, commonly mediate the inter-
actions of ECM components with extracellular mole-
cules, including growth factors, adhesion molecules,
and cytokines. Recently, the potential roles of GAGs
in various biological processes [27, 30], including
angiogenesis [26], viral invasion [29], tumor growth
[34], and bone metabolism [1, 3, 28], have been re-
ported.

Well-known endogenous GAGs include heparin,
heparan sulfate, keratan sulfate, chondroitin sulfate
and hyaluronic acid. GAG structures are based on
a disaccharide repeat. Four classes of GAGs exist and
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are each distinguished by a particular repeating disac-
charide. Among them, heparin is based on a repeat di-
saccharide of iduronic acid-(�1-4)-N-acetylglucosam-
ine-(�1-4).

Bone morphogenic proteins (BMPs) were origi-
nally identified as unique proteins in demineralized
bone matrix that induce ectopic bone formation upon
implantation into muscular tissues [33]. BMPs were
later shown to regulate the differentiation and func-
tion of cells that are involved in bone and cartilage
formation and degradation, including osteoblasts,
chondrocytes, and osteoclasts [4].

Signaling through BMPs is initiated by binding to
the specific transmembrane receptors, type I and type
II serine/threonine kinase receptors [37]. Type I re-
ceptors are activated by ligand bound-type II recep-
tors and then phosphorylate downstream molecules in
the cytoplasm. Further, Smad 1/5/8 transcription fac-
tors are substrates that are phosphorylated by the
BMP receptor (BMPR) in the cytoplasm and accumu-
late in the nucleus within 1 h after BMP stimulation
[35]. Phosphorylated Smads directly regulate the ex-
pression of primary target genes by binding to their
promoter or enhancer elements together with Smad 4
and other transcription factors [12].

Recently, we have found that heparin inhibits BMP-2
osteogenic bioactivity by binding to both BMP-2 and
BMPR. However, the effects of GAGs, including
heparin, on BMP activity have not been fully exam-
ined. For example, heparan sulfate/heparin chains
have been found to bind to BMP-4 and restrict the ex-
pression pattern of BMP-4 in Xenopus embryos [22].
Heparan sulfate also binds to noggin, a secreted
polypeptide that inhibits the function of BMP, result-
ing in modification of BMP-4 activity [23], while
heparan sulfate chains bind to BMP-7 and the heparan
sulfate/BMP-7 interaction is required for BMP-7 sig-
naling [11]. In addition, heparan sulfate and heparin
inhibit BMP-2 osteogenic activity by sequestering
BMP-2 on the cell surface and mediating the inter-
nalization of BMP-2 [14]. In contrast, some studies
have reported that heparin enhances the biological ac-
tivities of BMP-2 by protecting BMP-2 from degrada-
tion and inhibition by BMP antagonists [32, 38].
Thus, the mechanism by which heparin regulates
bone metabolism induced by BMP-2 remains unclear.
We hypothesized that heparin can act as either a nega-
tive or positive modulator of BMP activity depending
on its action time. Because we have already reported
that heparin suppresses BMP-2-induced osteogenic

activity [16], we examined the effects of heparin on
osteoblast differentiation induced by BMP-2 for pro-
longed periods of time in the present study.

Materials and Methods

Reagents

Porcine intestinal mucosal heparin was purchased
from Sigma Chemical Co. (St. Louis, MO, USA). Re-
combinant human BMP-2 was kindly supplied by As-
tellas Pharmaceutical Inc. (Tokyo, Japan). The anti-
phospho Smad 1/5/8 polyclonal antibody, anti-
phospho-p38 MAPK polyclonal antibody, and anti-
p38 MAPK polyclonal antibody were obtained from
Cell Signaling Technology, Inc. (Beverly, CA, USA).
The anti-Smad 1/5/8/9 polyclonal antibody was pur-
chased from Abcam (Cambridge, UK).

Cell culture

MC3T3-E1 cells, an osteoblastic cell line established
from mouse calvaria, were cultured in �-minimum es-
sential medium (�-MEM; Gibco, Grand Island, NY,
USA) containing 10% fetal calf serum (FCS; Gibco),
penicillin G (100 U/ml), and streptomycin (100 µg/ml).
The cells were maintained at 37°C in an atmosphere
containing 5% CO�.

Alkaline phosphatase (ALP) activity

Quantitative analysis of ALP activity was performed
biochemically using the Bessey-Lowry enzymological
method [2]. Cells were distributed in 24-well plates at
a density of 1 × 10�/well and incubated for 24 h. The
growth medium was changed, and the cells were cul-
tured with or without BMP-2 (100 ng/ml) and heparin
(100 µg/ml). After an additional 48–144 h of incuba-
tion, the cells were washed twice with Hank’s bal-
anced salt solution (HBSS) and solubilized with
HBSS containing 0.2% Nonidet P-40. The ALP activ-
ity of the lysate was determined using p-nitrophe-
nylphosphate (pNPP; Wako, Osaka, Japan). After
a 30-min incubation at 37°C, the absorbance of pNPP
was measured at 405 nm using a Multiscan JX micro-
plate reader (Thermo Fisher Scientific, Rockford, IL,
USA). The ALP activity was normalized for protein
concentration using the DC protein assay kit (Bio-
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Rad, Hercules, CA, USA) measured by spectropho-
tometry at 630 nm. The specific activity of alkaline
phosphatase was calculated as µM/µg protein.

RT-PCR analysis

Gene expression levels were determined using a re-
verse transcription-polymerase chain reaction (RT-
PCR) method. Total RNA was extracted using a Total
RNA Extraction Miniprep System (Viogene Co, Sun-
nyvale, CA, USA) according to the manufacturer’s in-
structions, and the reverse transcript was subjected to
PCR. Oligonucleotide primers were designed to am-
plify cDNA fragments encoding Runx2 (381 bp) and
osterix (497 bp). The following primers were used:
runx2 forward; 5’-CCAGATGGGACTGTGGTTA-
CC-3’ and reverse; 5’-ACTTGGTGCAGAGTTCAG-
GG-3’, osterix forward; 5’-CTGGGGAAAGGAGGC-
ACAAAGAAG-3’ and reverse; 5’-GGGTTAAGG-
GGAGCAAAGTCAGAT-3’, and GAPDH forward;
5’-ACCACAGTCCATGCCATC AC-3’ and reverse;
5’-TCCACCACCCTGTTGCTGTA-3’.

Real-time RT-PCR analysis

In some experiments, the extracted total RNA was re-
verse-transcribed and subjected to real-time RT-PCR.
For real-time RT-PCR, the PCR products were de-
tected by the FAST SYBR Green Master Mix (Ap-
plied Biosystems, Foster City, CA). The following
primer sequences were used: �-actin forward; 5’-CTG-
AACCCTAAGGCCAACCGTG-3’ and reverse; 5’-GGC-
ATACAGGGACAGCACAGCC-3’, noggin forward;
5’-CTGGTGGACCTCATCGAACA-3’ and reverse;
5’-CTCGTTCAGATCCTTCTCCTTAGG-3’, follista-
tin forward; 5’-GAAAACCTACCGCAACGAATG-3’
and reverse; 5’-TCCGGCTGCTCTTTGCAT-3’, smad
6 forward; 5’-GGGTGTCTCTAGCATCGTTTCG-3’ and
reverse; 5’-CCGCGACCGCTCAACTC-3’, and smad
7 forward; 5’-CAGCACTGCCAAGCATGG T-3’ and
reverse 5’-ACCGAAACGCTGATCCAAAG-5’. Ther-
mal cycling and fluorescence detection were per-
formed using a StepOne�� Real-Time PCR System
(Applied Biosystems). The real-time RT-PCR effi-
ciency (E) was calculated according to the equation
provided by Rasmussen [25] (E = 10[–1/slope]) for
�-actin and various target genes. The slope was deter-
mined from the graph of ng of cDNA substrate (x-
axis) versus the cycle number at the crossing point
(CP) (y-axis). The CP is the PCR cycle number that

represents the CP in SYBR Green fluorescence intensity
above the automatic noise-based threshold. The fold in-
crease in copy numbers of mRNA was calculated as
a relative ratio of the target gene to �-actin, following
the mathematical model introduced by Pfaffl [24].

Fold increase =

Western blot analysis

Cells were distributed in 6-well plates at a density of
8×10�/well and incubated for 24 h. The growth me-
dium was changed, and the cells were cultured with or
without BMP-2 (100 ng/ml) and heparin (100 µg/ml).
After an additional 0.5–48 h of incubation, the cells
were washed with phosphate buffered saline (PBS)
and lysed in lysis buffer (75 mM Tris-HCl containing
2% SDS and 10% glycerol, pH 6.8). The protein con-
tents were measured using a DC protein assay kit. The
samples were subjected to 10% SDS-PAGE and trans-
ferred to polyvinylidene difluoride membranes (Milli-
pore Corp., Bedford, MA, USA). Non-specific binding
sites were blocked by immersing the membranes in
10% skim milk in PBS for 60 min at room temperature,
after which the membranes were washed 4 times with
PBS and incubated with the diluted primary antibody
overnight at 4°C. Anti-phospho-Smad 1/5/8, anti-
Smad1, anti-phospho-p38, and anti-p38 antibodies and
horseradish peroxidase-conjugated anti-mouse and
anti-rabbit IgG secondary antibodies (Santa Cruz Bio-
technology, Inc. Santa Cruz, CA, USA) were used in
this experiment. After washing the membranes, ECL
reagent (Amersham Pharmacia Biotech, Uppsala, Swe-
den) was used for chemiluminescence detection with
Hyperfilm-ECL (Amersham Pharmacia Biotech).

Statistical analysis

Statistical analyses for ALP activity were conducted with
statistics software (JMP8.0.2, SAS Institute Inc., Cary,
NC, USA). The results were expressed as the mean ± SD.
One-way analysis of variance was employed to analyze
the manner in which the distribution of each continuous
variable differed across the groups. The Tukey-Kramer
HSD (honestly significant difference) test was utilized to
test differences with respect to the group means.

In real-time RT-PCR analyses, statistical signifi-
cance was determined using Student’s t-test. A p value
of less than 0.05 was considered significant.
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Results

Heparin enhances osteoblast differentiation

induced by BMP-2

To determine the effect of heparin on osteoblast differ-
entiation induced by BMP-2, we assessed ALP activity,
a typical marker of osteoblast differentiation. ALP ac-
tivity and mineralization are well known to be dramati-
cally enhanced when MC3T3-E1 cells are cultured
with BMP-2. Heparin inhibited the ALP activity in-
duced by BMP-2 after culturing for 72 h. However,
heparin remarkably enhanced the ALP activity induced
by BMP-2 after culturing for 120–144 h (Fig. 1).

Heparin sustains the BMP-2-mediated signaling

activity

Next, we examined the levels of Smad 1/5/8 phospho-
rylation for prolonged periods of time. BMPs activate
identical amino acid sequences at the C-terminal do-
main of R-Smads. The phosphorylation of Smad 1/5/8
was noticeable after 30 min of BMP-2 treatment,
which continued for up to 6 h and then gradually de-
creased until 48 h. As we have previously reported
[16], heparin (100 µg/ml) inhibited the levels of phospho-
rylation of Smad 1/5/8 induced by BMP-2 (100 ng/ml) at
the time points of 30 min and 1 h. However, when the
cells were incubated with both BMP-2 and heparin for
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Fig. 1. Heparin has biphasic effects on
ALP activity induced by BMP-2 in
osteoblasts. MC3T3-E1 cells (2 � 10�

cells/well) were stimulated with BMP-2
(100 ng/ml) in the presence or ab-
sence of various concentrations of
heparin for 48–144 h. The specific ac-
tivity of ALP was determined as de-
scribed in the Materials and Methods.
Values are expressed as fold in-
creases relative to untreated controls.
The data are expressed as the mean
± SD of triplicate cultures. The experi-
ment was performed three times with
similar results obtained in each experi-
ment. * p < 0.0001 as measured by the
Tukey-Kramer HSD test

Fig. 2. Heparin has biphasic effects on
BMP-2-mediated Smad-1/5/8 phos-
phorylation. MC3T3-E1 cells (4 � 10�

cells/well) were stimulated with BMP-2
(100 ng/ml) in the presence or ab-
sence of heparin (100 µg/ml) for the in-
dicated time periods, then whole
lysates were subjected to immunoblot-
ting analyses



longer periods (24 and 48 h), the level of Smad 1/5/8
phosphorylation was higher than that in cells treated
with BMP-2 alone (Fig. 2).

BMP receptors are well-known to determine the in-
tensity of BMP signals via Smad 1 C-terminal phos-
phorylations, and the duration of the activated
phospho-Smad signal is known to be regulated by se-
quential Smad linker region phosphorylation at con-
served MAPK and GSK sites [8]. To elucidate the role
of the p38 MAPK pathway in the regulation of
BMP-2 responses, the expression of phospho-p38
MAPK was detected by Western blot analysis. How-
ever, the phosphorylation of p38 MAPK did not
change when the cells were cultured with BMP-2 or
heparin (data not shown).

To exclude the role of heparin in osteogenesis in-
duced by BMP-2 for prolonged periods of time, we
assessed the expression levels of genes related to os-
teoblast differentiation, such as runx2 and osterix, by
RT-PCR. In 72-h cultures, the expression levels of

runx2 and osterix mRNA were not affected by the
treatment with BMP-2 (100 ng/ml). In contrast, when
the cells were incubated with both BMP-2 and hepa-
rin (100 µg/ml), the mRNA expression of these genes
was remarkably enhanced (Fig. 3 A, B).

Heparin inhibits the BMP-2-induced mRNA

expression of BMP-2 antagonists and inhibitory

Smads

To examine the mechanisms involved in the enhance-
ment of BMP-2-induced osteogenesis by heparin for
prolonged periods of time, we assessed the expression
levels of BMP-2 antagonist genes, such as noggin and
follistatin, by real-time RT-PCR. In 24- and 48-h cul-
tures, stimulation with BMP-2 (100 ng/ml) enhanced the
expression levels of noggin and follistatin mRNA. In
contrast, the mRNA expression of these genes was re-
markably suppressed when the cells were cultured with
both BMP-2 and heparin (100 µg/ml) (Fig. 4 A, B).

Finally, we assessed the expression levels of smad
6 and smad 7, which are known as inhibitory Smads,
by real-time RT-PCR. In 48-h cultures, the stimulation
of BMP-2 (100 ng/ml) enhanced the expression levels
of smad 6 and smad 7 mRNA. However, the mRNA
expression of these genes was suppressed below basal
control levels when the cells were cultured with both
BMP-2 and heparin (100 µg/ml) (Fig. 5 A, B).

Discussion

Long-term administration of heparin is well-known to
be associated with an increased risk of developing os-
teoporosis [15, 36]. Heparin has also been reported to
have a tendency to increase the formation of osteo-
clasts at lower concentrations, whereas it tends to de-
crease the numbers of osteoclasts in rat bone marrow
cell cultures at high concentrations [7]. Recent reports
have indicated that GAGs, including heparin, heparan
sulfate, keratan sulfate, dermatan sulfate, chondroitin-
4-sulfate, chondroitin-6-sulfate, and hyaluronic acid,
mediate BMP activity [14, 17, 19] and that sulfation is
required for BMP activity-mediated processes [20,
21]. However, the effects of heparin (which is the
most sulfated GAG) on osteogenic activity have not
been fully elucidated. Takada and Zhao have indicated
that heparin enhances the biological activities of
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Fig. 3. Heparin enhances the gene expression of runx2 and osterix in
MC3T3-E1 cells. MC3T3-E1 cells (4 � 10� cells/well) were incubated
with BMP-2 (100 ng/ml) in the presence or absence of heparin
(100 µg/ml) for 72 h, then total RNA from each cell culture was
reverse-transcribed with random primers. PCR amplification was
performed using primers specific for (A) Runx2, (B) osterix, and
GAPDH. The PCR products were resolved on 2 % agarose gels and
stained with ethidium bromide
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Fig. 5. Heparin supresses the gene expression of Smad 6 and Smad 7 in MC3T3-E1 cells. MC3T3-E1 cells (4 x 10� cells/well) were cultured
with BMP-2 (100 ng/ml) in the presence or absence of heparin (100 µg/ml) for 48 h. Total RNA was isolated, reverse transcribed into cDNA and
PCR-amplified using SYBR green. The PCR amplification was performed using primers specific for (A) Smad 6, (B) Smad 7, and �-actin. The
fold changes in Smad 6 and Smad 7 mRNA copy number values represent the average ± SD of data derived from triplicate cultures. * p < 0.05,
** p < 0.05, respectively, as measured by Student’s t-test

Fig. 4. Heparin suppresses the gene expression of noggin and follistatin in MC3T3-E1 cells. MC3T3-E1 cells (4 � 10� cells/well) were cultured
with BMP-2 (100 ng/ml) in the presence or absence of heparin (100 µg/ml) for 24 or 48 h. Total RNA was isolated, reverse-transcribed into cDNA
and PCR-amplified using SYBR green. The PCR amplification was performed using primers specific for (A) noggin, (B) follistatin, and �-actin.
The fold changes in noggin and follistatin mRNA copy number values represent the average SD of data derived from triplicate cultures. * p <
0.05, ** p < 0.01, respectively, as measured by Student’s t-test



BMP-2 by protecting BMP-2 from degradation and
inhibition by BMP antagonists [32, 38]. In addition,
Miyazaki has indicated that heparin alone enhances
osteoblast growth, differentiation, and mineralization
[20].

We have previously reported that heparin inhibits
BMP-2 osteogenic bioactivities, such as ALP activity,
by binding to both BMP-2 and BMPR; this binding
ability of heparin also inhibits BMP-2-induced Smad
1/5/8 phosphorylation and decreases the expression
levels of Runx2 and osterix genes within 12 h [16]. In
the present study, we found that heparin enhanced the
BMP-2 osteogenic bioactivity (Fig. 1), the phospho-
rylated levels of Smad 1/5/8 (Fig. 2), and the expres-
sion levels of genes related to osteoblast differentia-
tion (Fig. 3) after a longer culture period. These data
represent the first report of contrasting time-
dependent effects of heparin in mediating BMP-2 ac-

tivity, although previous reports have noted discrep-
ancies between cell types, culture conditions, and
heparin concentrations [6, 7, 18]. Interestingly, our re-
sults clearly indicate that time was the major factor
for the discrepancy in BMP-2-mediated osteogenesis.

Previous studies have reported that bioactive BMPs
remain in the extracellular space in the presence of
heparin for a longer period of time and that active
ligands are protected from suppression by antagonist
[38]. Furthermore, our present study suggests that
heparin negatively regulates the expression of BMP
antagonists and inhibitory Smads that are induced by
BMP signaling as part of the negative feedback loop
to suppress excess signaling (Fig. 6).

We examined the mechanism by which heparin en-
hanced the BMP-2-mediated bioactivity for pro-
longed periods of time. BMP signaling is well-known
to be determined by the binding of BMPs and their re-
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Fig. 6. Schematic of the molecular mechanism of the role of heparin in BMP-2-induced osteogenesis. In this model, short-term treatment with heparin
inhibits BMP-2 osteogenic activity via competitive inhibition of the binding of BMP-2 to the BMP receptor. In contrast, heparin negatively regulates the
negative feedback loop and enhances BMP-2- induced osteogenic activity in long- term cultures



ceptors. However, soluble BMP antagonists such as
noggin and follistatin are known to directly bind to
BMPs and prevent functional receptor/ligand interac-
tions [5]. Furthermore, Smad 6 and Smad 7 have also
been shown to bind to BMP receptors and inhibit
BMP signaling [10, 31]. As shown in Figures 4 and 5,
the mRNA expression of noggin, follistatin, Smad 6
and Smad 7 by BMP-2 was preferentially blocked by
heparin in prolonged culture time periods. Although
measurement of the heparin-induced protein expres-
sion of BMP-2 antagonists or inhibitory Smads is still
needed, these results suggest that heparin up-regulates
the BMP-2-induced osteogenic activity through the
contributions of BMP-2 antagonists and inhibitory
Smads. Jeon et al. have reported that heparin en-
hances BMP-2-induced ALP activity in rat calvarial
osteoblasts using heparin-conjugated poly (L-lactide-
co-glycolide) (PLGA) nanospheres (HCPNs) sus-
pended in a fibrin gel culture system [13]. Furthermore,
HCPNs have been reported to stimulate bone forma-
tion and calcium deposition in vivo. Taken together,
these data suggest that heparin in osteoblasts may be
partially dependent on this potentiation of BMP-2 ac-
tivity. Heparin has been found to influence multiple
pathways, including Wnt and Nodal [9]. Further ex-
periments are needed to clarify the role of heparin in
the regulation of BMP-2 both in vivo and in vitro.

In conclusion, we found that heparin inhibited
BMP-2 osteogenic bioactivity in 72-h cultures and en-
hanced the activity in 144-h cultures. These results
suggest that heparin sustains BMP-2 osteogenic activ-
ity and indicate the crucial role of heparin in bone tis-
sue under both physiological and pathological condi-
tions. Therefore, one might expect that the appropri-
ate timing of heparin administration will promote
bone healing mediated by BMP-2.
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