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Abstract:

The objective of the present study was to delineate the role of excessive accumulation of mitochondrial nitrogen species contributing

to oxidative stress induced by hypoxia/reoxygenation in isolated mitochondria. The present study shows that incubation of isolated

rat heart mitochondria under hypoxic, but not anoxic conditions, followed by reoxygenation decreases the rate of mitochondrial oxy-

gen consumption, mitochondrial membrane potential, and calcium retention capacity. These alterations were prevented, at least in

part, by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a nitric oxide (NO) scavenger,

NG-nitro-L-arginine-methyl ester (L-NAME), a broad-spectrum NO synthase inhibitor, or tempol, a superoxide dismutase mimetic

and catalytic scavenger of peroxynitrite-derived radicals. In conclusion, these findings suggest a crucial role for nitric oxide path-

ways in cardiac oxidative stress induced by hypoxia/reoxygenation.
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Introduction

The inherent vulnerability of cardiomyocytes to oxy-

gen deprivation and metabolic stress contributes to

myocardial dysfunction in many heart diseases [16].

Experiments with isolated cardiac myocytes have

demonstrated that hypoxia increases reactive species

production. Excessive accumulation of reactive oxy-

gen (ROS) and nitrogen species (RNS) and their un-

controlled oxidation of cellular components are re-

ferred to as oxidative stress [10, 16]. Mitochondria re-

main one of the main cellular sources of oxidative

stress and play a crucial role in oxidative injury dur-

ing hypoxia and reoxygenation [20]. The mitochon-

drial respiratory chain at complexes I and III has long

been considered the major site of intracellular ROS

production. Several studies have reported that expos-

ing cells or tissues to hypoxic conditions increases

oxidative stress [9]. Convincingly, mutant cells that

lack mitochondrial respiration do not show this in-

crease, indicating that mitochondrially generated ROS

or RNS are responsible for this increase [8]. In hy-

poxic cells, this increase is mitigated by a defective

cytochrome c or by inhibiting the expression of the

Rieske iron-sulfur protein in complex III. Both condi-
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tions affect the oxidation of ubiquinol to ubisemiqui-

none, suggesting that the Q cycle in complex III con-

tributes to the increased oxidative stress during hy-

poxia [8, 11].

Several studies suggest that mitochondria may pro-

duce nitric oxide (NO) via the mitochondrial NO syn-

thase (mtNOS); however, the presence of a constitu-

tively active mtNOS and the determination of mtNOS

activity are still controversial [13]. Recently, another

pathway for mitochondrial NO synthesis that uses the

respiratory chain to reduce nitrite (NO�) to NO has

been revealed in several mammalian cells [5]. Be-

cause cytochrome oxidase produces NO from nitrite

at low oxygen concentrations, it is possible that the

mitochondrially generated oxidants for which concen-

tration increases under hypoxic conditions are not

only ROS, but also peroxynitrite (ONOO�), which is

formed from a reaction between mitochondrially gen-

erated superoxide anion and NO [7]. Within the mito-

chondrial matrix, peroxynitrite can irreversibly inhibit

complexes I and II of the respiratory chain as well as

ATP synthase. Peroxynitrite contributes to an increase

in hydroxyl radical production, which in turn causes

oxidation of lipids, proteins, and DNA [19].

Because mitochondria are the primary sites for oxi-

dative and nitrosative stress within cardiac cells, it

seems reasonable that targeting these organelles with

nitric oxide and peroxynitrite scavengers could be

a particularly effective strategy to protect the myocar-

dium. Numerous compounds with these general char-

acteristics have been synthesized and evaluated in

a variety of in vitro and in vivo models of redox stress.

In the present study, we tested whether 2-(4-car-

boxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

(carboxy-PTIO), a NO scavenger, N�-nitro-Largini-

ne-methyl ester (L-NAME), a broad spectrum NO

synthase inhibitor, or 4-hydroxy-2,2,6,6-tetramethyl-

piperidine-1-oxyl (tempol), a superoxide dismutase

mimetic and catalytic scavenger of peroxynitrite-de-

rived radicals, would reduce mitochondrial dysfunc-

tion induced by hypoxia and reoxygenation.

Materials and Methods

Animals used

Adult male (250–300 g) Sprague-Dawley rats (Char-

les River Lab, France) were used to prepare cardiac

mitochondria. All experiments were conducted in ac-

cordance with the European Institute for Health

guidelines for the use of laboratory animals.

Reagents

Carboxy-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-

imidazoline-1-oxyl-3-oxide], a nitric oxide (NO)

scavenger, was purchased from Cayman Chemical,

Ann Arbor, MI, USA. Carboxy-PTIO reacts with NO

to form nitric dioxide and 2-(4-carboxyphenyl)-

4,4,5,5-tetramethylimidazoline-1-oxyl (carboxy-PTI).

NG-nitro-L-arginine-methyl ester (L-NAME) and 4-

hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (tempol)

were purchased from Sigma (Sigma, L’Isle d’Abeau-

Chesnes, France). Suspensions of mitochondria were

incubated with 10 µM carboxy-PTIO, 10 mM

L-NAME, or 2.5 mM tempol.

Mitochondria preparation

As previously described [14], the heart was excised

and then rinsed in buffer A (sucrose 300 mM, TES

5 mM, EGTA 0.2 mM, pH 7.2, at 4°C). After homog-

enization, a sample of 1 ml was first centrifuged at

800 × g for 10 min, and then the supernatant was cen-

trifuged at 8,800 × g for 10 min. The pellet was sus-

pended in buffer A and centrifuged at 8,800 × g for

10 min. The final mitochondria pellet was suspended

either in respiration medium or in the medium used

for mitochondrial membrane potential evaluation. The

purity and integrity of isolated mitochondria were as-

sessed by measuring the specific activities of

NADPH-cytochrome c reductase, a reticulum-specific

enzyme, and cytochrome c oxidase, an inner mem-

brane enzyme [23].

In vitro hypoxia and near anoxia

To obtain hypoxic samples, 1 ml of aerated respiration

medium MiR05 (sucrose 110 mM, EGTA 0.5 mM,

MgCl2 3.0 mM, K-lactobionate 60 mM, KH2PO4

10 mM, taurine 20 mM, HEPES 20 mM, and 1.0 g/l

BSA, pH 7.1, 25°C) was added to tightly sealed

chamber thermostated at 25°C and equipped with an

oxygen-sensitive sensor (Oxygraph 2k, Oroboros,

Innsbruck, Austria) that continuously monitored the

oxygen concentration. From the initial volume (1 ml)

of the sealed chamber, a volume of 0.1 ml of the

buffer was removed, and the remaining buffer was
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purged with N2. Once the O2 reached the desired con-

centration, N2 was stopped, and the mitochondria

sample (0.5 mg in 0.1 ml) was added to the chamber.

After 15 min of stirring, the chamber cap was gently

lifted, and the suspensions were reoxygenated with air

for 15 min and referred to as hypoxia/reoxygenation.

In another series of experiments, near anoxia was

reached within seconds, as mitochondria consumed

all available oxygen in the chamber. Throughout the

anoxic period, the oxygen concentration was at zero

within the closed chamber that contained the mito-

chondrial suspensions. After 15 min of anoxia, sus-

pensions were exposed to room air for 15 min and re-

ferred to as anoxia/reoxygenation.

Mitochondrial respiration

Mitochondria were suspended in the respiration me-

dium MiR05 at a concentration of 500 µg per 100 µl.

The following respiration parameters were evaluated

with high-resolution Oxygraph 2k (Oroboros, Inns-

bruck, Austria), as previously described [14]: state 2

respiration rate (oxygen uptake with glutamate 5 mM

and malate 2 mM in the absence of exogenous ADP)

and state 3 respiration rate (oxygen uptake with

5 mM, malate 2 mM, and ADP 500 µM).

Mitochondrial membrane potential measurement

and calcium retention capacity

In separate experiments, isolated mitochondria (1 mg/ml

proteins) were suspended in buffer B (sucrose 250 mM,

Tris-MOPS 10 mM, glutamate-Tris 5 mM, malate-

Tris 2 mM, Pi-Tris mM, EGTA-Tris 0.02 mM, pH 7.4,

at 25°C) in a multiport measurement chamber

(NOCHM-4, WPI, Aston, UK) equipped with Ca2+,

tetraphenylphosphonium (TPP+)-selective microelec-

trodes, and reference electrodes (WPI, Aston, UK), as

previously described [6, 12, 14].

First, mitochondria were gently stirred for 1.5 min

in buffer C containing 1.5 µM TPP� (Sigma, Saint

Quentin, France). Calibration of the TPP� electrode

was performed following the manufacturer’s recom-

mendations in “Determination of Membrane Potential

with TPP� and an Ion Selective Electrode System” at

http://www.oroboros.at/index.php?id=protocols_tpp-

membranepotential. Mitochondrial transmembrane

potential (��m) was estimated according to the trans-

membrane distribution of TPP� [6] and calculated as

59log(v/V) – 59log(10����� –1), where v is the mito-

chondrial matrix volume (1.1 µl/mg mitochondrial

protein), V is the volume chamber (1 ml), and �E is

the voltage difference (mV) between measurements

before and after 2,4-dinitrophenol (DNP) treatment

(50 µM), which was used to fully induce ��m dissi-

pation [12, 14].

In another series of experiments, mitochondria cal-

cium retention capacity was assessed, as previously

described [4, 14]. In brief, mitochondrial were gently

stirred for 1.5 min in buffer B, and 20 µM CaCl� was

added every 90 s using a microsyringe injector

adapted to a Micro4 Pump Controller (UMPII and

Micro4, WPI, Aston, UK). Each 20-µM CaCl� pulse

was detected as a peak of extramitochondrial Ca��

concentration. Ca�� was then rapidly taken up by the

mitochondria, resulting in a return of extramitochon-

drial Ca�� concentration near baseline levels.

Statistics

The results were analyzed using ANOVA procedures.

When a significant difference was found, the specific

differences between groups were tested using a se-

quentially rejective Bonferroni procedure. A value of

p < 0.05 was considered statistically significant.

Results and Discussion

Effects of in vitro hypoxia and near anoxia in

mitochondrial preparations

Under normoxic conditions (control), the rate of oxy-

gen consumption (state 2) was 105 ± 25 pmol oxy-

gen/s/mg. Addition of ADP increased oxygen con-

sumption (state 3) to 880 ± 135 pmol oxygen/s/mg.

During normoxia, the mitochondrial membrane

potential at steady state was –216 ± 5 mV, and the

calcium retention capacity was 175 ± 30 nmol/mg

mitochondrial protein. After 15 min of hypoxia

(2–4 mmHg) followed by reoxygenation, the rate of

mitochondrial oxygen consumption, mitochondrial

membrane potential, and calcium retention capacity

markedly decreased; near anoxia conditions had no

effect on these mitochondrial parameters (Tab. 1).

These results are consistent with previous studies

showing that hypoxia/reoxygenation, but not anoxia,

may induce injury to cardiac mitochondria, character-
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ized by the inhibition of respiration, dissipation of

membrane potential, cytochrome c release, and major

oxidative stress [17, 18, 21, 24]. Indeed, during an-

oxia, the mitochondrial proton motive force collapses

unless ATP is provided to be used by ATPase to gen-

erate this force. During hypoxia, isolated mitochon-

dria are able to support the membrane potential until

the O2 supply becomes very low, whereas near anoxia

typically fully dissipates the membrane potential

(��m). During hypoxia, electrons accumulate in res-

piratory carriers (e.g., cytochromes) and cofactors

(e.g., NADH) to create a reductive stress that pro-

motes the generation of oxygen radicals when mo-

lecular oxygen once again becomes available. In vitro

hypoxia/reoxygenation of isolated mitochondria is

a deleterious stimulus mediated by oxidative stress,

which is largely prevented during anoxia/reoxygena-

tion. A global sealing to metabolite exchange occurs

in mitochondria during anoxia. This condition is char-

acterized by the retention of the mitochondrial proton

motive force (pH gradient and membrane potential)

despite the absence of energy input from electron

flow and ATP hydrolysis [1–3].

Nitric oxide scavenging preserved mitochondrial

function in hypoxia/reoxygenation conditions

In contrast to mitochondria exposed to the vehicle

control, mitochondrial suspensions incubated with ei-

ther carboxy-PTIO (10 µM), L-NAME (10 mM) or

tempol (2.5 mM) throughout the hypoxic challenge

maintained a vigorous respiratory response to ADP

(500 µM) after reoxygenation (Fig. 1). Reports of

a mitochondrial NO synthase in heart tissues led us to

determine the effects of the competitive inhibitor

L-NAME on cardiac mitochondrial function in rats.

Similarly, increased accumulation of NO within mito-

chondria led us to use the NO scavenger carboxy-

PTIO. As it is possible that mitochondrially generated

oxidants under hypoxic conditions include peroxyni-

trite (ONOO–), we also tested tempol, a superoxide

dismutase mimetic and catalytic scavenger of per-

oxynitrite-derived radicals. Previous studies have

shown that these compounds may target the mito-

chondria [15, 22]. As these compounds prevented the

reduction in rate of mitochondrial oxygen consump-

tion (state 3) induced by hypoxia/reoxygenation, we

evaluated their effects on mitochondrial membrane

potential and calcium retention capacity. Although

carboxy-PTIO (10 µM), L-NAME (10 mM), or tem-
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Tab. 1. Mitochondrial parameters in response to hypoxia and near
anoxia followed by reoxygenation

State 2 State 3 Membrane
potential

Ca2+ retention
capacity

Control 105 ± 25 1020 ± 65 –216 ± 5 175 ± 30

Hypoxia 80 ± 5* 845 ± 35* –195 ± 3* 145 ± 30*

Anoxia 100 ± 12 1175 ± 60 –219 ± 1 195 ± 35

The rates of respiration are given in picomoles of O� per second per
milligram wet weight (pmol O�/s/mg). The state 2 respiration rate
(state 2) was determined with glutamate (5 mM) + malate (2 mM)
without ADP. The state 3 respiration rate (state 3) was determined in
the presence of ADP (500 µM) with mitochondrial substrates added
to the preparation. Mitochondrial membrane potential is expressed in
mV, and Ca�� retention capacity is expressed in nmol/mg mitochon-
drial protein. The data are expressed as the mean ± SEM. The results
were analyzed with one-way ANOVA and Bonferroni’s multiple
comparison post-hoc adjustment (n = 10 in each group; * indicates
p < 0.05)

Fig. 1. Changes in mitochondrial respiration (state 3) induced by
carboxy-PTIO (10 µM), L-NAME (10 mM) or tempol (2.5 mM) in
suspensions of mitochondria exposed to hypoxia and reoxygenation.
The results (the mean ± SEM) are expressed as percent of control
values. * Indicates p < 0.05



pol (2.5 mM) had no detectable effects in control mi-

tochondria (data not shown), these drugs supported, at

least in part, mitochondrial membrane potential re-

covery and calcium retention capacity during reoxy-

genation (Tab. 2). These findings further support the

contention that mitochondrial sources of NO modu-

late mitochondrial functions during hypoxia/reoxy-

genation.

In conclusion, our study in isolated mitochondria

provides new evidence that hypoxia/reoxygenation

injury may be largely prevented by nitric oxide scav-

enging strategies. It should be stated that these results

were obtained under conditions of simulated hy-

poxia/reoxygenation in isolated cardiac mitochondria.

To determine the potential consequences of our find-

ings in the prevention of myocardial ischemia reperfu-

sion injury, these pharmacological approaches should

be further tested in whole heart preparations.
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