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Abstract:

Resveratrol (RSV), a polyphenolic phytoestrogen, has been shown to activate the serine/threonine kinase 5’-adenosine

monophosphate-activated protein kinase (AMPK) and to stimulate insulin signaling and glucose uptake in skeletal muscle cells.

A direct effect of RSV on neuronal insulin signaling, however, has not been demonstrated. Here, we report that RSV stimulates glu-

cose uptake and potentiates insulin signaling in Neuro-2A (N2A) cells, which is characterized by the increased phosphorylation of

protein kinase B (Akt) and glycogen synthase kinase-3� �GSK-3�). Furthermore, RSV activates AMPK in N2A cells, which can be

prevented using a specific pharmacological inhibitor, Compound C. Compound C abrogates RSV-induced Akt and GSK-3� phos-

phorylation and glucose uptake. Thus, we demonstrate that RSV potentiates insulin signaling and glucose uptake via AMPK activa-

tion in neuronal cells.
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Introduction

Resveratrol (3,4’,5-trihydroxy-trans-stilbene, RSV) is

a phytoestrogen that can be isolated from red wine,

grapes, peanuts and mulberries [1]. RSV has shown

a variety of beneficial physiological effects including

anti-oxidant [21], cardioprotective, anti-atherosc-

lerotic [1] and neuroprotective properties [30] and has

even been reported to prolong the life span of mice

[2]. In addition, RSV has recently gained attention as

an anti-diabetic agent because it has been shown to in-

crease insulin sensitivity [25] and stimulate glucose

uptake in myotubes by 5’-adenosine monophosphate-

activated protein kinase (AMPK) activation [5, 19].

The effect of RSV on neuronal insulin signaling, how-

ever, has not been reported.

Insulin plays an integral role in the brain, so it is

not surprising that dysregulated insulin signaling has
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been linked to multiple complications [28]. Therefore,

studies investigating the roles of therapeutic agents that

activate neuronal insulin signal transduction have be-

come essential. Such studies, however, have not been

addressed as much as those concentrated on peripheral

tissues. In neurons, the PI3K-Akt-GSK3� and Ras-Raf-

MEK-Erk1/2 pathways govern the abovementioned ac-

tions of insulin [8, 20]. The interaction of insulin with its

receptor activates phosphatidylinositol-3-kinase (PI3K),

which then leads to Akt-mediated GLUT4 translocation

and glucose uptake [3].

AMPK is a fuel-sensing kinase consisting of cata-

lytic � (�1, �2) and regulatory � (�1, �2) and � (�1, �2,

�3) subunits. This kinase has emerged as an important

pharmacological target for the treatment of type 2 dia-

betes. The activity of AMPK is induced by elevated

AMP:ATP levels, exercise, anti-diabetic drugs like

metformin and thiazolidinediones, and RSV [12]. The

high metabolic activity of neurons renders AMPK

a crucial energy regulator [9, 24]. In neurons, AMPK

plays a role in cytoprotection under ischemic and

pathological conditions [9]. Even the activation of

AMPK attenuates complications of neurodegenerative

diseases such as Alzheimer’s disease [29].

Therefore, the objective of the present study is to

elucidate the effect(s) of RSV on insulin signaling and

glucose uptake in neuronal cells and to investigate

any involvement of AMPK.

Materials and Methods

Resveratrol (5-[(1E)-2-(4-hydroxyphenyl)ethenyl]ben-

zene-1,3-diol), Compound C (6-[4-(2-piperidin-1-yl-

ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a]py-

rimidine), [3H]2-deoxy-D-glucose (2-DOG), Mini-

mum Essential Medium (MEM), and anti-rabbit IgG

coupled to alkaline phosphatase were from Sigma

Chemical Co. (MO, USA). Bovine insulin was pur-

chased from Calbiochem (CA, USA). Fetal bovine

serum (FBS) and trypsin-EDTA were purchased from

Gibco BRL (NY, USA). Antibodies against pAMPK

(Thr172), AMPK, pAkt (Ser473), Akt, pGSK-3�

(Ser9), and GSK-3� were from Cell Signaling Tech-

nology (MA, USA). All other reagents were from

Sigma Chemical Co. (MO, USA) unless stated other-

wise.

Cell culture and treatment

Neuro-2A (N2A), a mouse neuroblastoma cell line,

was cultured in MEM supplemented with 10% fetal

bovine serum (FBS) with antibiotics (penicillin

100 IU/ml and streptomycin 100 µg/ml) in 5% CO2 at

37°C. Cells at 70% confluence were serum-starved in

MEM for 24 h, treated with various concentrations of

RSV for 2 h, and then incubated with 100 nM insulin

for 30 min. Compound C-treated cells were pre-

incubated with 50 µM of compound C or vehicle

(DMSO) for 30 min before addition of RSV.

Preparation of cell lysates and immunoblotting

After N2A cells were lysed in cell lysis buffer, the

protein concentration was estimated, and western

blotting was performed as previously reported [15].

Glucose uptake assay

A glucose uptake assay was performed as previously

reported from our laboratory with minor modifica-

tions [16]. Briefly, cells were washed with serum-free

MEM, and then stimulated with or without 100 nM

insulin for 30 min. Next, 2-DOG (0.1 µCi/ml [3H]-

radiolabeled 2-DOG in 1 µM unlabeled 2-DOG) was

added, and the cells were incubated for 15 min. Cells

were washed in ice-cold PBS three times and then

solubilized in 0.1 M NaOH. After the protein concen-

tration was measured, [3H] in the samples was meas-

ured using a liquid scintillation counter.

Densitometry

Densitometry of the western blots was performed

using a Gel Doc 2000 apparatus and Quantity One

1-D analysis software, both from Bio-Rad (CA,

USA). Bands from positive control groups were as-

signed the value of 1.0, and the background value was

set as 0.0 for each experiment [15].

Statistical analysis

The data are expressed as the mean ± SEM. For the

comparison of two groups, a p-value was calculated

using a two-tailed unpaired Student’s t-test. In all

cases, p < 0.05 was considered statistically significant.
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Results and Discussion

To study the effect of RSV on glucose uptake, N2A

cells were treated with RSV at various concentrations

(10 µM, 50 µM, 100 µM, 200 µM) for 2 h. The addi-

tion of RSV increased glucose uptake in a dose-

dependent manner, with maximum uptake occurring

with 100 µM RSV. RSV (100 µM) alone increased

glucose uptake by 56.5 ± 0.06% (Fig. 1A, lane 7 vs.

lane 1, p < 0.01), and RSV with insulin stimulation

increased uptake by 42 ± 0.12% (Fig. 1A, lane 8 vs.

lane 2, p < 0.01). Moreover, 100 µM RSV did not af-

fect cell viability or morphology (data not shown).

These data corroborate previous studies showing RSV

promotes maximum glucose uptake in C2C12 and L6

myotubes at 100 µM after 1–2 h of incubation [5, 19].
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Fig. 1. The effect of RSV on glucose uptake and AMPK activation in
N2A cells: (A) After proliferation, cells were serum starved and
treated with or without RSV (10 µM, 50 µM, 100 µM and 200 µM) for
2 h, followed by stimulation with or without insulin. Glucose uptake
was determined by measuring [�H]2-DOG. Bars represent glucose
uptake in cpm/µg. (B) After proliferation, the cells were serum
starved and treated with or without RSV (100 µM) for 2 h. The protein
lysates (25 µg) were subject to western blotting and probed with an
anti-phospho-�-AMPK (Thr172) antibody. The blots were stripped
and re-probed with an anti-�-AMPK antibody. Bars represent the
relative densitometric values of phospho-�-AMPK/�-AMPK. All
experiments were performed in triplicate, and representative figures
are shown. Reported values are the mean ± SEM. * p < 0.01,
� p < 0.01� � p < 0.01, �� p < 0.01 compared to untreated samples;
** p < 0.01, �� p < 0.05, �� p < 0.05 compared to insulin-stimulated
samples
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Fig. 2. The effect of RSV on Akt and GSK-3� phosphorylation in N2A
cells: After proliferation, cells were serum starved and treated with or
without RSV (100 µM) for 2 h and stimulated with or without 100 nM in-
sulin for 30 min. The protein lysates (25 µg) were subject to western
blotting and probed with either an (A) anti-phospho-Akt (Ser473)
antibody or (B) anti-phospho-GSK-3� (Ser9) antibody. The blots were
stripped and re-probed with an (A) anti-Akt antibody or (B) anti-
GSK-3� antibody. Bars represent the relative densitometric values of
(A) phospho-Akt/Akt or (B) phospho-GSK-3�/GSK-3�. All experi-
ments were performed 3 times, and representative figures are
shown. The reported values are the mean ± SEM. * p < 0.05 and
� p < 0.05 compared to untreated samples; ** p < 0.01 and �� p < 0.01
compared to insulin-stimulated samples



One of above studies have also demonstrated that

100 µM RSV activates AMPK in skeletal muscle cells

[19]. Therefore, RSV-treated N2A lysates were sub-

ject to immunoblotting with an anti-phospho-

�-AMPK antibody. By western blotting, 100 µM

RSV increased AMPK phosphorylation by 106.3

± 0.04% (Fig. 1B, panel a, lane 2 vs. lane 1, p < 0.01)

as compared to untreated samples. No change in

AMPK expression levels was observed with RSV

treatment (Fig. 1B, panel b).

Akt phosphorylation has been associated with in-

creased glucose uptake in skeletal muscle cells [6]
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Fig. 3. The effect of AMPK inhibition on RSV-mediated Akt and GSK-3� phosphorylation and glucose uptake in N2A cells: (A) After proliferation,
cells were serum starved and incubated with or without 50 µM Compound C for 30 min followed by treatment with or without 100 µM RSV for 2 h
and then stimulated with or without 100 nM insulin. The protein lysates (25 µg) were subject to western blotting and probed with an anti-
phospho-�-AMPK (Thr172) antibody. The blots were stripped and reprobed with an anti-�-AMPK antibody. Bars represent the relative densi-
tometric values of phospho-�-AMPK/�-AMPK. (B) After proliferation, cells were serum starved and incubated with or without 50 µM Compound
C for 30 min followed by treatment with or without 100 µM RSV for 2 h and then stimulation with or without 100 nM insulin. Glucose uptake was
determined using [�H]2-DOG. Bars represent glucose uptake in cpmµg��. (C) The protein lysates (25 µg) were subjected to western blotting
and probed with an anti-phospho-Akt (Ser473) antibody. The blots were stripped and reprobed with anti-Akt antibody. Bars represent the rela-
tive densitometric values of phospho-Akt/Akt. (D) The protein lysates (25 µg) were subjected to western blotting and probed with an anti-
phospho-GSK-3� (Ser9) antibody. The blots were stripped and reprobed with an anti-GSK-3� antibody. Bars represent the relative densitomet-
ric values of phospho-GSK-3�/GSK-3�. All experiments were performed 3 times, and representative figures are shown. The reported values
are the mean ± SEM. ** p < 0.01, �� p < 0.01, � p < 0.05 and � p < 0.05 compared to 100 µM RSV-treated samples; �� p < 0.01, �� p < 0.01 and
�� p < 0.01 compared to 100 µM RSV and 100 nM insulin-stimulated samples



and 3T3-L1 adipocytes [17]. To identify the pathway

through which RSV, alone or in combination with in-

sulin, induced glucose uptake, we performed a west-

ern blot to probe for the phosphorylation of Akt, a key

insulin signaling protein, and the downstream kinase

GSK-3�. Cell lysates were immunoblotted with either

an anti-phospho-Akt (Fig. 2A) or an anti-phospho-

GSK-3� antibody (Fig. 2B). RSV alone increased the

phosphorylation of both Akt and GSK-3� by 25.4

± 0.08% (Fig. 2A, lane 3 vs. lane 1, p < 0.05) and 22.6

± 0.03% (Fig. 2B, lane 3 vs. lane 1, p < 0.05), respec-

tively, as compared to untreated samples. With insulin

stimulation, RSV treatment further increased Akt and

GSK-3� phosphorylation by 39.0 ± 0.28% (Fig. 2A,

lane 4 vs. lane 2, p < 0.01) and 33.2 ± 0.05% (Fig. 2B,

lane 4 vs. lane 2, p < 0.01), respectively, as compared

to untreated insulin-stimulated samples. Enhanced

AMPK activation and the increased levels of phos-

phorylated Akt and GSK-3� upon RSV treatment in-

dicate that AMPK activation by RSV may influence

the increased insulin sensitivity. Previous in vitro

studies performed with muscle cells have shown that

RSV induces insulin sensitivity through AMPK acti-

vation [5, 19]. Moreover, in vivo studies have indi-

cated that RSV improves metabolism [2] and in-

creases insulin sensitivity through AMPK activation

[27] in mice. The latter study has revealed that mice

deficient in AMPK fail to increase insulin sensitivity

and glucose tolerance in response to RSV treatment,

suggesting that AMPK plays a central role in mediat-

ing the effect of RSV.

To elucidate the role of AMPK in the above men-

tioned effects of RSV, we used Compound C, a spe-

cific inhibitor of AMPK [5]. To determine whether

Compound C (50 µM) has any effect on RSV-

mediated AMPK activation, cell lysates were im-

munoblotted with an anti-phospho-�-AMPK antibody

(Fig. 3A). Compound C completely inhibited RSV-

mediated AMPK phosphorylation (Fig. 3A, panel a,

lane 3 vs. lane 2, p < 0.01) without affecting AMPK

expression (Fig. 3A, panel b). Moreover, cell viability

and morphology were not affected by Compound C

treatment (data not shown). RSV-induced glucose up-

take was abrogated by Compound C in samples with-

out (Fig. 3B, bar 7 vs. bar 3, p < 0.01) and with

(Fig. 3B, bar 8 vs. bar 4, p < 0.01) insulin stimulation.

Similarly, Compound C abrogated RSV-induced Akt

and GSK-3� phosphorylation without (Fig. 3C, lane 7

vs. lane 3, p < 0.05 and Fig. 3D, lane 7 vs. lane 3, p <

0.01, respectively) and with insulin stimulation

(Fig. 3C, lane 8 vs. lane 4, p < 0.01 and Fig. 3D,

lane 8 vs. lane 4, p < 0.01, respectively). The inhibi-

tion of AMPK by pre-incubation with Compound C

abrogated the effect of RSV on the phosphorylation of

Akt and GSK-3� followed by glucose uptake. This

validates our hypothesis that AMPK participates in

effect of RSV on the phosphorylation of Akt and

GSK-3� and glucose uptake.

It is understood that AMPK is not an inevitable

protein in the insulin signaling cascade [7, 11, 18, 26],

and AMPK activation, by its known activators like

AICAR (5-aminoimidazole-4-carboxamide ribonu-

cleotide) and RSV, has shown an effect on insulin sig-

naling [5, 19, 23]. Our results suggest that this signal-

ing cascade is present in neuronal cells because insu-

lin treatment did not affect AMPK phosphorylation

(Fig. 4) in our neuronal cell model, and AMPK acti-

vation by RSV potentiated neuronal insulin signaling,
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Fig. 4. The effect of 100 nM insulin on AMPK phosphorylation in N2A
cells: After proliferation, cells were serum starved and treated with or
without 100 nM insulin for 30 min. The protein lysates (25 µg) were
subject to western blotting and probed with an anti-phospho-
�-AMPK (Thr172) antibody. The blots were stripped and re-probed
with an anti-�-AMPK antibody

- -

Fig. 5. The effect of Compound C on basal and insulin-induced
AMPK phosphorylation. After proliferation, N2A cells were serum
starved and incubated with or without 50 µM Compound C for 30 min
followed by stimulation with or without 100 nM insulin. The protein
lysates (25 µg) were subject to western blotting and probed with an
anti-phospho-�-AMPK (Thr172) antibody. The blots were stripped
and re-probed with anti-AMPK antibody



which was evident by increased Akt and GSK-3� ac-

tivation followed by increased glucose uptake. More-

over, Compound C inhibited RSV-induced AMPK ac-

tivation seen by reduced Akt and GSK-3� phosphory-

lation and glucose uptake.

In this study we observed that the specific AMPK

inhibitor, Compound C, did not affect insulin-induced

Akt and GSK-3� phosphorylation or glucose uptake.

Compound C, a competitive AMPK inhibitor [31],

only inhibited RSV-induced AMPK phosphorylation

without altering the basal or insulin-stimulated phos-

phorylation status of AMPK (Fig. 3A and Fig. 5).

Similar observations have been reported previously

regarding Compound C and a steady basal phosphory-

lation state of AMPK [10, 13, 14], which explains the

ineffectiveness of Compound C against the insulin-

induced Akt and GSK-3� phosphorylation and glu-

cose uptake.

The ability of AMPK to increase insulin sensitivity

and increase glucose uptake has been shown in

C2C12, L6 myotubes, cardiomyocytes and 3T3-L1

adipocytes in earlier studies [4, 5, 19]. In muscle cells,

it has been observed that AMPK activation imparts

a synergistic effect on insulin-stimulated Akt activa-

tion and glucose uptake, suggesting that insulin sensi-

tivity is affected by a connection between AMPK and

Akt activation. However, the role of AMPK in regu-

lating insulin sensitivity to neurons was unexplored.

In neurons, AMPK acts as a multidimensional energy

sensor that regulates an organism’s metabolism by al-

tering feeding behavior and locally regulating neu-

ronal homeostasis [24]. Apart from its involvement in

energy homeostasis [22], its cytoprotective effect [9],

and its ability to differentiate neurons [8], our study

suggests that AMPK is involved in increasing the in-

sulin responsiveness and glucose uptake of neuronal

cells.

In summary, RSV potentiates insulin sensitivity

and glucose uptake in neurons by activating AMPK.

Thus, our study provides a rationale for exploring the

therapeutic potential of RSV and AMPK in complica-

tions associated with the dysregulation of neuronal in-

sulin signaling.
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