Pharmacological Reports
2011, 63, 1145-1150
ISSN 1734-1140

Copyright © 2011
by Institute of Pharmacology
Polish Academy of Sciences

Anti-hypertensive effects of probenecid
via inhibition of the ai-adrenergic receptor

Jin Baek Park, Sung-Jin Kim

Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry,

Kyung Hee University, Seoul, Korea

Correspondence: Sung-Jin Kim, e-mail: kimsj@khu.ac.kr

Abstract:

Probenecid has long been used in the treatment of gout. Its anti-gout mechanisms consist of uric acid reuptake inhibition and the con-
sequent facilitation of uric acid excretion. In the present study, we investigated whether probenecid could exert an anti-hypertensive
effect in spontaneously hypertensive rats (SHR). The noninvasive indirect tail cuff method was employed to measure blood pressure
and heart rate. The administration of probenecid (50 mg/kg, ip) induced a significant systolic blood pressure (SBP) decrease, from
167 mmHg to 141 mmHg, within 120 min. In contrast, probenecid had little effect on normotensive control Wistar Kyoto rats
(WKY). The anti-hypertensive effects of probenecid are almost as potent as those of atenolol. In a further exploration of the anti-
hypertensive mechanisms of probenecid, its effects on phenylephrine-induced blood vessel contraction were tested. Our results sug-
gest that probenecid significantly inhibited the contractions of rat aorta. This effect was also observed with endothelium-removed rat
aorta, suggesting that probenecid can directly interact with the a-adrenergic receptor. Moreover, probenecid inhibited the
a-adrenergic-receptor-mediated activation of ERK I/I in MC3TC-E1 cells. Therefore, our results indicate that probenecid might al-

leviate high blood pressure in SHR via inhibition of the a-adrenergic receptor and ERK I/I1.
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Introduction

Probenecid has long been used in the treatment of
gout. Its anti-gout action inhibits a renal tubular trans-
porter, thereby inhibiting uric acid reuptake and, in
turn, stimulating uric acid excretion in urine [2, 10,
14]. The effects of probenecid on anionic transporters
are well established: the blockade of cAMP or cGMP
release from erythrocytes [4, 8], ATP release from
glial cells [1, 3], and dye loss in several cell types [5,
6]. Recently, it has been found that probenecid inhib-
its pannexin 1 channels [18]. Moreover, probenecid
acts as a non-selective inhibitor of multidrug resis-
tance-associated proteins, and strikingly, it has neuro-

protective effects in a transgenic animal model of
Huntington’s disease [21].

A considerable body of evidence indicates that uric
acid plays a significant role in the development of hy-
pertension. In rats, mild hyperuricemia causes elevated
blood pressure, which can be prevented by administra-
tion of uric acid-lowering agents such as allopurinol,
a xanthine oxidase inhibitor, and benziodarone, a uri-
cosuric agent [12]. Several mechanisms implicating
uric acid in hypertension have been proposed, such as
inflammatory and vascular changes in renal microcir-
culation, the activation of the renin-angiotensin sys-
tem, and endothelial dysfunction [12, 13, 15, 17]. En-
dothelial function by itself is important in regulation
of blood pressure [23]. In addition, considerable clini-
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cal data suggest the potential role of uric acid in sys-
temic hypertension [11]. Therefore, the capacity of
probenecid to reduce uric acid might have a blood
pressure-lowering functionality. In the present study,
we tested the hypothesis that probenecid can reduce
blood pressure, and we explored the potential role of
the a-adrenergic receptor.

Materials and Methods

Animals and reagents

Fourteen-week-old male spontaneously hypertensive
rats (SHR) and Wistar Kyoto (WKY) rats were pur-
chased from Hanlim Experimental Animals Co., Ko-
rea. The body weights (g) of SHR and WKY rats were
310 £ 9.4 and 363 + 7.0, respectively. All of the nec-
essary chemicals were purchased from Sigma Chemi-
cal Co. Throughout the experiments, the animals were
treated according to NIH guidelines for care and use
of laboratory animals.

Measurement of vasorelaxant activity

WKY rats were sacrificed by CO, administration, af-
ter which the thoracic aorta was removed and cleaned
of adherent tissues. The aorta was cut into 3—5 mm
long rings, from which endothelial cells were me-
chanically removed by gently rubbing off the lumen
with a cotton swab to avoid mediation of endothe-
lium-derived vasodilator substances and endothelial
ATP-sensitive K channels [26]. The removal of the
endothelial functionality was verified by the lack of
relaxation when acetylcholine (3 uM) was applied to
rings precontracted with phenylephrine (3 uM). The
rings were then suspended on a fixed and flexible
stainless steel wire (1.0 g resting tension) in a 10 ml or-
gan bath containing physiological salt solution (PSS;
composition in mmol/l: NaCl 118.0, KCI 4.0, CaCl,
H,0 1.9, MgSO, 7H,0 0.4, KH,PO, 1.0, NaHCO; 25,
glucose 11.1). The wire was connected to a Grass FT
03 force transducer attached to a McLab computer-
ized digital recording system (AD Instruments, Aus-
tralia) to record contractile responses. After a resting
period of 1 h, the rings were incubated in phenyl-
ephrine (10”7 M) to which probenecid (10~ M) was
subsequently added.
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Measurement of blood pressure and heart rate

Rats were kept in a warm environment (30-32°C) for
15-20 min, after which their systolic blood pressure
(SBP) was measured by the indirect tail cuff method
[22, 25]. According to this protocol, constant pressure
was applied to a programmed electrosphygmoma-
nometer (Narco Biosystems PE-300) connected to an
occlusion cuff, and while the pressure decreased,
a Korotkoff sound microphone and physiograph
(Narco Trace TM-80) recorded the first point of the
emerging pulse, which was regarded as the SBP.
Heart rates were measured using a MacLab data ac-
quisition system to count the beats per min.

Western blot analysis

Proteins (50 pg/lane) were electrophoretically sepa-
rated in 10% polyacrylamide gels containing SDS and
then transferred to nitrocellulose membranes (Schlei-
cher & Schuell) for 1 h at 100 V (constant), as de-
scribed by Towbin et al. [19]. The membranes were
preincubated (for 1 h at 23°C) with PBS containing
0.1% Tween 20 and 3% bovine serum albumin. After-
wards, they were washed with PBS containing 0.1%
Tween 20, three times for 10 min each. Blots were
probed with primary antibodies against ERK and
pERK (1:500) for 2 h at room temperature or overnight
at 4°C diluted in blocking buffer. Blots were then incu-
bated with HRP-conjugated anti-rabbit IgG for 1 h at
room temperature and washed with PBS containing
Tween 20, three times for 10 min each. An ECL (NEN)
was carried out to detect immobilized specific anti-
gens. Images were analyzed using Image J software.

Statistical analyses

All data were expressed as the mean + SEM. Statisti-
cal analyses were performed using a one-way
ANOVA followed by a Turkey’s multiple comparison
test; p < 0.05 was considered to be significant.

Results

SHR have been widely used as an animal model in the
study of human essential hypertension. Here, SHR
and sex- and age-matched WKY were tested to ex-
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Fig. 1. Effects of probenecid on blood pressure and heart rate in SHR. Following administration of probenecid or atenolol (50 mg/kg, ip) to SHR,
blood pressure (A and C) and heartrate (B and D) were measured as described in the Materials and Methods section. Following administration
of probenecid (50 mg/kg, ip) to WKY rats, blood pressure (E) and heart rate (F) were measured. All data are expressed as the mean + SEM (n = 5).
*p <0.05 " p<0.01, ** p < 0.001; differences are compared with a control group

>
S

=~
@

A

— B Probenecid

|

",
|
|

Tension (g)
l«y “n

"’I,I

\

§

Tension (g)
Tension (g)
,)

- 1 1 1
A 10 min A 10 min A 10 min
Phe Phe Phe

Phe Phe+Probenecid

Fig. 2. Effects of probenecid on phenylephrine-induced blood vessel contraction. The thoracic aorta was isolated from WKY rats and
subjected to blood vessel contraction experiments, as described in the Materials and Methods section. Blood vessel contraction was
measured following phenylephrine treatment (B). To verify the integrity of endothelium, acetylcholine was added after the contraction of blood
vessel was induced by phenylephrine (A). The effect of probenecid on the phenylephrine-induced blood vessel contraction was measured (C).
Quatitation of the blood vessel contraction by phenylephrine with or without probenecid was measured (D). All data are expressed as the mean
+ SEM (n = 5). * p < 0.05; differences are compared with a control group
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Fig. 3. Effect of probenecid on endothelium-removed blood vessel contraction induced by phenylephrine. The thoracic aorta was isolated from
WKY rats and subjected to blood vessel contraction experiments following endothelium removal, as described in Materials and Methods.
Blood vessel contraction was measured following phenylephrine treatment (B). To verify the integrity of endothelium, acetylcholine was added
after the contraction of blood vessel was induced by phenylephrine (A). The effect of probenecid on the phenylephrine-induced blood vessel
contraction was measured (C). Quatitation of the blood vessel contraction by phenylephrine with or without probenecid was measured (D). All
of the data are expressed as mean + SEM. (n=5). *p < 0.05, differences are compared with a control group
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Fig. 4. Effects of probenecid on phenylephrine-induced activation of
ERK I/Il. Cultured MC3T3-E1 cells were treated with phenylephrine
(10 uM) in the absence or presence of probenecid (10 uM or 1 mM)
and subjected to cell lysis followed by western blot analysis, as de-
scribed in the Materials and Methods section. Blots were probed with
anti-ERK and anti-pERK antibodies and subjected to ECL detection
(A). The densities of the ERK and pERK bands were measured by
scanning densitometry, and the ratio of pERK to ERK was determined
(B). Data are expressed as the mean = SEM (n = 3). * p < 0.05, differ-
ences are compared with a control group
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plore any possible anti-hypertensive action of
probenecid. Following probenecid administration, the
noninvasive indirect tail cuff method was employed
to measure SBP and heart rate. When 50 mg/kg of
probenecid was administered intraperitoneally to
SHR, the SBP significantly decreased, from 167 mm
Hg to 155 mm Hg in 5 min, and then slowly de-
creased to 141 mm Hg in 120 min (Fig. 1A). Heart
rate changes in response to the same administration
were almost normal except for a transient sharp in-
crease after 5 min (Fig. 1B). Next, we compared the
anti-hypertensive effects of probenecid with those of
atenolol, a standard anti-hypertensive drug. Atenolol
showed a capacity to decrease the high blood pressure
of SHR to almost normal values (120 mm Hg; Fig.
1C). Similarly, heart rates steadily fell in response to
atenolol (Fig. 1D). The effect of probenecid on SBP
and heart rates of normotensive WKY rats was almost
negligible (Figs. 1E and 1F).

To explore the potential anti-hypertensive mecha-
nism of probenecid in relation to the a-adrenergic re-
ceptor, thoracic aorta rings were employed. Specifi-
cally, we tested whether probenecid had any effect on
phenylephrine-induced vasoconstriction. To verify the
integrity of the endothelium, acetylcholine (3 uM)
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was added, causing a significant relaxation in rings
precontracted with phenylephrine (107 M; Fig. 2A).
A phenylephrine treatment of intact aortas at the con-
centration of 10”7 M caused a clear contraction of ves-
sels; a subsequent probenecid treatment (10~ M), af-
ter full vessel contraction, caused a 40% reduction in
the response (Figs. 2B through D). Next, we sought to
determine if the endothelium was involved in a probe-
necid-induced reduction of aortic vessel contraction.
The endothelium removal was confirmed by the fact
that acetylcholine (3 uM) failed to cause relaxation of
rings precontracted with phenylephrine (10”7 M; Fig.
3A). With endothelium-removed aorta, probenecid
(107 M) could reduce phenylephrine-induced aortic ves-
sel contraction by 38% (Figs. 3 B through D). To test
the hypothesis that probenecid regulates the o-adren-
ergic receptor-mediated blood pressure, we employed
MC3T3-E1 cells expressing functional o-adrenergic
receptors to determine if probenecid could inhibit
a-adrenergic-receptor-activated ERK I/II. Our results
showed that while phenylephrine (1 uM) stimulated
the ERK I/II activity by 2.19-fold compared with the
control, probenecid effectively decreased the pheny-
lephrine-induced ERK I/II activity by 11% and 57% at
10 uM and 1 mM concentrations, respectively (Fig. 4).

Discussion

A significant body of evidence indicates that hyperu-
ricemia is associated with the development of hyper-
tension. Accordingly, a number of uricosuric agents
have been used to ameliorate hypertension. Thus, we
investigated whether probenecid could exert anti-
hypertensive effects on SHR. Indeed, probenecid had
remarkable anti-hypertensive properties, which might
be related to the inhibition of the a-adrenergic recep-
tor in blood vessels.

Hypertension is one of the most devastating health
problems in the world, affecting more than 26% of the
adult population. Recently, it has been suggested that
hyperuricemia is strongly associated with hyperten-
sion and cardiovascular mortality. A xanthine oxidase
inhibitor, allopurinol, showed a significant blood
pressure-reducing action in a short-term study [7].
Taking these facts into consideration, we hypothe-
sized that probenecid, through its uric acid-lowering
effect, can have an anti-hypertensive function. We
studied an animal model widely used in studies on es-

sential hypertension, SHR. Our data showed that pro-
benecid (50 mg/kg, ip) significantly reduced the high
blood pressure of SHR to almost normal levels. In-
deed, the anti-hypertensive effects of probenecid were
almost equal to those of atenolol. Unlike atenolol,
which reduces heart rate in a time-dependent manner,
probenecid did not significantly lower the heart rate;
this feature could be useful in clinical situations.

To unravel the anti-hypertensive mechanisms of
probenecid, we investigated whether it could affect
blood vessel contraction. Interestingly, we found that
probenecid caused the relaxation of phenylephrine-
induced contraction of the thoracic aorta. Moreover,
this effect was due to a direct interaction with the
smooth muscle of the thoracic aorta because endothe-
lium-removed vessels showed the same effect. Unlike
probenecid, which had no effect on the endothelial
function, it has been recently suggested that allopuri-
nol, in addition to its uric acid-lowering effect, im-
proved the endothelial function by reducing vascular
oxidative stress [9]. Altogether, these results strongly
suggest that the vasorelaxation effect of probenecid
did not occur via endothelium but rather through the
o-adrenergic receptor inhibition. Further studies are
required to delineate the selectivity of a-adrenergic
receptor subtypes for probenecid. However, the re-
laxation of aortic blood vessels by probenecid might
be accomplished mainly through the ol-adrenergic
receptor because the major o-adrenergic receptor
present in the aorta is the ol subtype [24]. To obtain
additional evidence of the a-adrenergic-receptor-me-
diated anti-hypertensive action of probenecid, its ef-
fects on ERK I/II were investigated. It has already been
established that a-adrenergic receptors are present in
osteoblastic cells such as SaOS-2, HOS, MG-63, and
MC3T3-El. The latter type of cells expresses the al-
adrenergic receptor, and the receptor activation by
phenylephrine could lead to ERK I/II activation [16].
Therefore, we employed MC3T3-El cells to test
whether probenecid interacts with the ol-adrenergic
receptor through its inhibitory effect on ERK I/II. Our
results clearly showed that probenecid inhibited
phenylephrine-induced activation of ERK I/II, sug-
gesting an interaction with the o 1-adrenergic receptor.
Considering that uric acid levels in blood of SHR are
typically almost normal [20], it is reasonable to sug-
gest that probenecid has an anti-hypertensive effect
partly via interaction with the o1-adrenergic receptor
in blood vessels rather than through uric acid-re-
ducing action.
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