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Abstract:

Probenecid has long been used in the treatment of gout. Its anti-gout mechanisms consist of uric acid reuptake inhibition and the con-

sequent facilitation of uric acid excretion. In the present study, we investigated whether probenecid could exert an anti-hypertensive

effect in spontaneously hypertensive rats (SHR). The noninvasive indirect tail cuff method was employed to measure blood pressure

and heart rate. The administration of probenecid (50 mg/kg, ip) induced a significant systolic blood pressure (SBP) decrease, from

167 mmHg to 141 mmHg, within 120 min. In contrast, probenecid had little effect on normotensive control Wistar Kyoto rats

(WKY). The anti-hypertensive effects of probenecid are almost as potent as those of atenolol. In a further exploration of the anti-

hypertensive mechanisms of probenecid, its effects on phenylephrine-induced blood vessel contraction were tested. Our results sug-

gest that probenecid significantly inhibited the contractions of rat aorta. This effect was also observed with endothelium-removed rat

aorta, suggesting that probenecid can directly interact with the �-adrenergic receptor. Moreover, probenecid inhibited the

�-adrenergic-receptor-mediated activation of ERK I/II in MC3TC-E1 cells. Therefore, our results indicate that probenecid might al-

leviate high blood pressure in SHR via inhibition of the �-adrenergic receptor and ERK I/II.
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Introduction

Probenecid has long been used in the treatment of

gout. Its anti-gout action inhibits a renal tubular trans-

porter, thereby inhibiting uric acid reuptake and, in

turn, stimulating uric acid excretion in urine [2, 10,

14]. The effects of probenecid on anionic transporters

are well established: the blockade of cAMP or cGMP

release from erythrocytes [4, 8], ATP release from

glial cells [1, 3], and dye loss in several cell types [5,

6]. Recently, it has been found that probenecid inhib-

its pannexin 1 channels [18]. Moreover, probenecid

acts as a non-selective inhibitor of multidrug resis-

tance-associated proteins, and strikingly, it has neuro-

protective effects in a transgenic animal model of

Huntington’s disease [21].

A considerable body of evidence indicates that uric

acid plays a significant role in the development of hy-

pertension. In rats, mild hyperuricemia causes elevated

blood pressure, which can be prevented by administra-

tion of uric acid-lowering agents such as allopurinol,

a xanthine oxidase inhibitor, and benziodarone, a uri-

cosuric agent [12]. Several mechanisms implicating

uric acid in hypertension have been proposed, such as

inflammatory and vascular changes in renal microcir-

culation, the activation of the renin-angiotensin sys-

tem, and endothelial dysfunction [12, 13, 15, 17]. En-

dothelial function by itself is important in regulation

of blood pressure [23]. In addition, considerable clini-
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cal data suggest the potential role of uric acid in sys-

temic hypertension [11]. Therefore, the capacity of

probenecid to reduce uric acid might have a blood

pressure-lowering functionality. In the present study,

we tested the hypothesis that probenecid can reduce

blood pressure, and we explored the potential role of

the �-adrenergic receptor.

Materials and Methods

Animals and reagents

Fourteen-week-old male spontaneously hypertensive

rats (SHR) and Wistar Kyoto (WKY) rats were pur-

chased from Hanlim Experimental Animals Co., Ko-

rea. The body weights (g) of SHR and WKY rats were

310 ± 9.4 and 363 ± 7.0, respectively. All of the nec-

essary chemicals were purchased from Sigma Chemi-

cal Co. Throughout the experiments, the animals were

treated according to NIH guidelines for care and use

of laboratory animals.

Measurement of vasorelaxant activity

WKY rats were sacrificed by CO� administration, af-

ter which the thoracic aorta was removed and cleaned

of adherent tissues. The aorta was cut into 3–5 mm

long rings, from which endothelial cells were me-

chanically removed by gently rubbing off the lumen

with a cotton swab to avoid mediation of endothe-

lium-derived vasodilator substances and endothelial

ATP-sensitive K channels [26]. The removal of the

endothelial functionality was verified by the lack of

relaxation when acetylcholine (3 µM) was applied to

rings precontracted with phenylephrine (3 µM). The

rings were then suspended on a fixed and flexible

stainless steel wire (1.0 g resting tension) in a 10 ml or-

gan bath containing physiological salt solution (PSS;

composition in mmol/l: NaCl 118.0, KCl 4.0, CaCl�
H�O 1.9, MgSO� 7H�O 0.4, KH�PO� 1.0, NaHCO� 25,

glucose 11.1). The wire was connected to a Grass FT

03 force transducer attached to a McLab computer-

ized digital recording system (AD Instruments, Aus-

tralia) to record contractile responses. After a resting

period of 1 h, the rings were incubated in phenyl-

ephrine (10�� M) to which probenecid (10�� M) was

subsequently added.

Measurement of blood pressure and heart rate

Rats were kept in a warm environment (30–32°C) for

15–20 min, after which their systolic blood pressure

(SBP) was measured by the indirect tail cuff method

[22, 25]. According to this protocol, constant pressure

was applied to a programmed electrosphygmoma-

nometer (Narco Biosystems PE-300) connected to an

occlusion cuff, and while the pressure decreased,

a Korotkoff sound microphone and physiograph

(Narco Trace TM-80) recorded the first point of the

emerging pulse, which was regarded as the SBP.

Heart rates were measured using a MacLab data ac-

quisition system to count the beats per min.

Western blot analysis

Proteins (50 µg/lane) were electrophoretically sepa-

rated in 10% polyacrylamide gels containing SDS and

then transferred to nitrocellulose membranes (Schlei-

cher & Schuell) for 1 h at 100 V (constant), as de-

scribed by Towbin et al. [19]. The membranes were

preincubated (for 1 h at 23°C) with PBS containing

0.1% Tween 20 and 3% bovine serum albumin. After-

wards, they were washed with PBS containing 0.1%

Tween 20, three times for 10 min each. Blots were

probed with primary antibodies against ERK and

pERK (1:500) for 2 h at room temperature or overnight

at 4°C diluted in blocking buffer. Blots were then incu-

bated with HRP-conjugated anti-rabbit IgG for 1 h at

room temperature and washed with PBS containing

Tween 20, three times for 10 min each. An ECL (NEN)

was carried out to detect immobilized specific anti-

gens. Images were analyzed using Image J software.

Statistical analyses

All data were expressed as the mean ± SEM. Statisti-

cal analyses were performed using a one-way

ANOVA followed by a Turkey’s multiple comparison

test; p < 0.05 was considered to be significant.

Results

SHR have been widely used as an animal model in the

study of human essential hypertension. Here, SHR

and sex- and age-matched WKY were tested to ex-
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plore any possible anti-hypertensive action of

probenecid. Following probenecid administration, the

noninvasive indirect tail cuff method was employed

to measure SBP and heart rate. When 50 mg/kg of

probenecid was administered intraperitoneally to

SHR, the SBP significantly decreased, from 167 mm

Hg to 155 mm Hg in 5 min, and then slowly de-

creased to 141 mm Hg in 120 min (Fig. 1A). Heart

rate changes in response to the same administration

were almost normal except for a transient sharp in-

crease after 5 min (Fig. 1B). Next, we compared the

anti-hypertensive effects of probenecid with those of

atenolol, a standard anti-hypertensive drug. Atenolol

showed a capacity to decrease the high blood pressure

of SHR to almost normal values (120 mm Hg; Fig.

1C). Similarly, heart rates steadily fell in response to

atenolol (Fig. 1D). The effect of probenecid on SBP

and heart rates of normotensive WKY rats was almost

negligible (Figs. 1E and 1F).

To explore the potential anti-hypertensive mecha-

nism of probenecid in relation to the �-adrenergic re-

ceptor, thoracic aorta rings were employed. Specifi-

cally, we tested whether probenecid had any effect on

phenylephrine-induced vasoconstriction. To verify the

integrity of the endothelium, acetylcholine (3 µM)
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was added, causing a significant relaxation in rings

precontracted with phenylephrine (10�� M; Fig. 2A).

A phenylephrine treatment of intact aortas at the con-

centration of 10�� M caused a clear contraction of ves-

sels; a subsequent probenecid treatment (10�� M), af-

ter full vessel contraction, caused a 40% reduction in

the response (Figs. 2B through D). Next, we sought to

determine if the endothelium was involved in a probe-

necid-induced reduction of aortic vessel contraction.

The endothelium removal was confirmed by the fact

that acetylcholine (3 µM) failed to cause relaxation of

rings precontracted with phenylephrine (10�� M; Fig.

3A). With endothelium-removed aorta, probenecid

(10�� M) could reduce phenylephrine-induced aortic ves-

sel contraction by 38% (Figs. 3 B through D). To test

the hypothesis that probenecid regulates the �-adren-

ergic receptor-mediated blood pressure, we employed

MC3T3-E1 cells expressing functional �-adrenergic

receptors to determine if probenecid could inhibit

�-adrenergic-receptor-activated ERK I/II. Our results

showed that while phenylephrine (1 µM) stimulated

the ERK I/II activity by 2.19-fold compared with the

control, probenecid effectively decreased the pheny-

lephrine-induced ERK I/II activity by 11% and 57% at

10 µM and 1 mM concentrations, respectively (Fig. 4).

Discussion

A significant body of evidence indicates that hyperu-

ricemia is associated with the development of hyper-

tension. Accordingly, a number of uricosuric agents

have been used to ameliorate hypertension. Thus, we

investigated whether probenecid could exert anti-

hypertensive effects on SHR. Indeed, probenecid had

remarkable anti-hypertensive properties, which might

be related to the inhibition of the �-adrenergic recep-

tor in blood vessels.

Hypertension is one of the most devastating health

problems in the world, affecting more than 26% of the

adult population. Recently, it has been suggested that

hyperuricemia is strongly associated with hyperten-

sion and cardiovascular mortality. A xanthine oxidase

inhibitor, allopurinol, showed a significant blood

pressure-reducing action in a short-term study [7].

Taking these facts into consideration, we hypothe-

sized that probenecid, through its uric acid-lowering

effect, can have an anti-hypertensive function. We

studied an animal model widely used in studies on es-

sential hypertension, SHR. Our data showed that pro-

benecid (50 mg/kg, ip) significantly reduced the high

blood pressure of SHR to almost normal levels. In-

deed, the anti-hypertensive effects of probenecid were

almost equal to those of atenolol. Unlike atenolol,

which reduces heart rate in a time-dependent manner,

probenecid did not significantly lower the heart rate;

this feature could be useful in clinical situations.

To unravel the anti-hypertensive mechanisms of

probenecid, we investigated whether it could affect

blood vessel contraction. Interestingly, we found that

probenecid caused the relaxation of phenylephrine-

induced contraction of the thoracic aorta. Moreover,

this effect was due to a direct interaction with the

smooth muscle of the thoracic aorta because endothe-

lium-removed vessels showed the same effect. Unlike

probenecid, which had no effect on the endothelial

function, it has been recently suggested that allopuri-

nol, in addition to its uric acid-lowering effect, im-

proved the endothelial function by reducing vascular

oxidative stress [9]. Altogether, these results strongly

suggest that the vasorelaxation effect of probenecid

did not occur via endothelium but rather through the

�-adrenergic receptor inhibition. Further studies are

required to delineate the selectivity of �-adrenergic

receptor subtypes for probenecid. However, the re-

laxation of aortic blood vessels by probenecid might

be accomplished mainly through the �1-adrenergic

receptor because the major �-adrenergic receptor

present in the aorta is the �1 subtype [24]. To obtain

additional evidence of the �-adrenergic-receptor-me-

diated anti-hypertensive action of probenecid, its ef-

fects on ERK I/II were investigated. It has already been

established that �-adrenergic receptors are present in

osteoblastic cells such as SaOS-2, HOS, MG-63, and

MC3T3-E1. The latter type of cells expresses the �1-

adrenergic receptor, and the receptor activation by

phenylephrine could lead to ERK I/II activation [16].

Therefore, we employed MC3T3-E1 cells to test

whether probenecid interacts with the �1-adrenergic

receptor through its inhibitory effect on ERK I/II. Our

results clearly showed that probenecid inhibited

phenylephrine-induced activation of ERK I/II, sug-

gesting an interaction with the �1-adrenergic receptor.

Considering that uric acid levels in blood of SHR are

typically almost normal [20], it is reasonable to sug-

gest that probenecid has an anti-hypertensive effect

partly via interaction with the �1-adrenergic receptor

in blood vessels rather than through uric acid-re-

ducing action.
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