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Abstract:

Mesangial cells are the main source of renal interstitial fibrosis in diabetic nephropathy (DN). Interferon-� (IFN-�) is a key cytokine

that may play a potential therapeutic role in reducing fibrosis. Here, we focus on the effects of IFN-� on human mesangial cells

(HMCs) treated with high glucose. This study shows that IFN-� phosphorylates STAT1, suppresses HMC proliferation, and down-

regulates mRNA and protein levels of transforming growth factor-�1 (TGF-�1) and connective tissue growth factor (CTGF) in

HMCs treated with high glucose. The regulation of P-STAT1 could change HMC proliferation and the expression of fibrotic cytoki-

nes TGF-�1 and CTGF in HMCs. These data indicate that IFN-� could activate STAT1 to suppress the increase in TGF-�1 and CTGF

synthesis in HMCs induced by high glucose. This paper may lead to new therapeutic treatments of DN.
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Abbreviations: CTGF – connective tissue growth factor, DN –

diabetic nephropathy, ECM – extracellular matrix, HG – high

glucose (25 mmol/l glucose), HMC – human mesangial cells,

IFN-� –interferon-�, JAK2/STAT – Janus kinase 2/signal trans-

ducers and activators of transcription, NG – normal glucose

(5.5 mmol/l glucose), mRNA – messenger ribonucleic acid,

MTT – 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide, PVDF – polyvinylidene fluoride, RT-PCR – reverse

transcription polymerase chain reaction, SDS-PAGE – sodium

dodecyl sulfate-polyacrylamide gel electrophoresis, TGF-�1 –

transforming growth factor-�1

Introduction

Increased interstitial mesangial fibrosis correlates

closely with declining renal function in diabetic neph-

ropathy (DN) [17, 19]. IFN-� have been reported to

play a potential therapeutic role in reducing fibrosis

[20, 21]. However, it is unclear how IFN-� affects me-

sangial cells that have been treated with high levels of

glucose.
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Mesangial cells can affect renal injury in several

ways. Cell proliferation and extracellular matrix (ECM)

synthesis, which are characteristics of mesangial cell

activation, occur in DN and cause interstitial fibrosis

[7, 12]. We have previously reported that human me-

sangial cells (HMCs) treated with high glucose dem-

onstrate two features: they grow faster and produce fi-

brotic cytokines [8]. Fibrotic cytokines transforming

growth factor-�1 (TGF-�1) and connective tissue

growth factor (CTGF) are important in the glomerular

accumulation of ECM and can induce persistent fibro-

sis [15, 27, 28]. These functions are important in

treating DN with renal interstitial fibrosis.

We have shown that the inhibition of Janus kinase

2/signal transducers and activators of the transcription

(JAK2/STAT) pathway is helpful in treating DN [8],

but the affects of regulating STAT separately from this

pathway remain unclear. The interaction of IFN-�

with its cell surface receptor leads to the phosphoryla-

tion of JAK2, which then phosphorylates the tran-

scription factor STAT1. Phosphorylated STAT1 forms

a homodimer and translocates to the nucleus where it

binds to the interferon-� activation site [5, 6, 25].

Fludarabine is a nucleoside analog used in the treat-

ment of hematologic malignancies that can also

inhibit cytokine-induced STAT1 phosphorylation.

Fludarabine can specifically deplete STAT1 without

depleting other STAT proteins [11, 13].

In this study, we investigated the effects of IFN-�

on HMCs treated with high glucose as well as the mo-

lecular mechanisms underlying these effects.

Materials and Methods

Cell line and reagents

Primary human mesangial cells (HMCs) and mesan-

gial cell medium were purchased from ScienCell Re-

search Laboratories (San Diego, CA, USA). The anti-

bodies against JAK2, P-JAK2, STAT1, P-STAT1 and

�-actin were all purchased from Cell Signaling Tech-

nology (Beverly, MA, USA). The antibodies against

CTGF and TGF-�1 were purchased from Santa Cruz

Biotechnology (Santa Cruz, CA, USA). The RT-PCR

system was purchased from Takara Biotechnology

(Dalian, China – subsidiary of Japan TaKaRa Bio

Inc.). IFN-� was purchased from Roche Diagnostics

(Nutley, NJ, USA). D-(+)-glucose, and the STAT-1 in-

hibitor fludarabine were purchased from Sigma Ald-

rich (St. Louis, MO, USA). Other chemicals were of

analytical reagent grade and were purchased locally

from commercial suppliers.

Cell culture

Primary HMCs were seeded in 25-cm� tissue culture

flasks in mesangial cell medium under either normal

glucose (NG, 5.5 mmol/l glucose) or high glucose

(HG, 25 mmol/l glucose) conditions. The culture me-

dium was supplemented with 10% fetal bovine serum,

100 U/ml penicillin and 100 µg/ml streptomycin in

a 5% CO� atmosphere. The cell medium was changed

every other day until the cells became confluent. Cells

in passages 3–6 were used. HMCs at approximately

70–80% confluence were cultured in serum-free 1640

medium with NG for 24 h to synchronize the cell

growth. Then, the medium was replaced with fresh

serum-free medium containing NG, HG or HG in the

presence of IFN-� or fludarabine.

Cell proliferation measurements

Cell proliferation was measured using 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) assays in 96-well microplates. Nine groups

were given different levels of glucose with or without

IFN-� or fludarabine. Medium (180 µl) was added to

every well. After 44 h, 20 µl of 5 mg/ml MTT was

added to each well. Four hours later, the medium was

replaced with 200 µl of dimethyl sulfoxide, and the

96-well microplate was shaken gently. Next, the ab-

sorbance was measured at 570 nm, and these data

were transformed into a variable representing the

number of cells in each well by using a curve that cor-

related the absorbance to the number of HMCs.

RNA extraction and RT-PCR analyses for

TGF-�1 mRNA and CTGF mRNA

Two micrograms of template RNA was reverse tran-

scribed using oligo (dT)18 primers in a final volume

of 20 µl. Human TGF-�1 and �-actin were amplified

using the following primers: TGF-�1 (161 bp), forward

5’-GCCCTGGACACCAACTATTGC-3’, reverse 5’-

AGGCTCCAAATGTAGGGGCAGG-3’; �-actin (539

bp), forward 5’-GTGGGGCGCCCCAGGCACCA-3’,

reverse 5’-CTCCTTAATGTCACGCACGATTTC-3’.
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The PCR conditions were 95°C for 4 min, followed by

30 cycles of 94°C for 30 s, 60.5°C for 20 s, and 72°C

for 50 s. Human CTGF (379 bp) was amplified using

the following primers: forward 5’- CTAAGACCTGTG-

GGATGGGC-3’, reverse 5’-CTC AAAGATGTCATT-

GTCCCC-3’. The PCR conditions were 94°C for

2 min, 35 cycles at 94°C for 30 s, 57°C for 40 s, and

72°C for 1.5 min, followed by final extension for

10 min at 72°C. The PCR products were subjected to

2% agarose gel electrophoresis, and the resulting gel

was analyzed with a GDS-8000 Bioimaging system

(UVP, Upland, CA, USA) and GelWorks 1D Grab It

software. RNA expression was quantified by compari-

son with the internal-control �-actin.

Western blot analyses of JAK2, P-JAK2,

STAT1, P-STAT1, TGF-�1 and CTGF proteins

To extract the total protein, each dish was treated for 60

min with ice-cold lysis buffer. The lysates were then cen-

trifuged at 10,000 × g for 5 min at 4°C. The protein con-

centration was assessed by a Bradford protein assay

(Bio-Rad, Richmond, CA, USA). Subsequently, samples

(50 µg of protein/lane) were separated by sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

(7%), transferred to polyvinylidene fluoride (PVDF)

membranes, and blocked by a 60-min incubation at room

temperature (22°C) in TTBS (TBS with 0.05% Tween

20, pH 7.4) plus 5% BSA. PVDF membranes were then

incubated overnight at 4°C with CTGF, TGF-�1, JAK2,

P-JAK2, STAT1, P-STAT1 or �-actin antibodies. After thor-

oughly washing, membranes were incubated for 100 min at

room temperature with goat antirabbit IgG horseradish

peroxidase conjugate. The proteins were detected using

an ECL detection system. The intensities of the bands

were measured using Image J.

Data analysis

All results are expressed as the mean ± SD. Differences

were evaluated using unpaired t-tests and an ANOVA;

p < 0.05 was considered statistically significant.
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Results

IFN-� inhibits the HG-induced HMC overprolif-

eration

To examine the antiproliferative effects of IFN-� on

HMCs treated with high glucose, we analyzed HMC

proliferation with MTT assays. As shown in Figure 1A,

the proliferation of HMCs peaked in the HG group

(NG: 0.244 ± 0.030 vs. HG: 0.342 ± 0.012, p < 0.01,

n = 5). The addition of 10 U/ml IFN-� and 100 U/ml

IFN-� decreased HMC proliferation significantly

(HG: 0.342 ± 0.012 vs. HG + 10 U/ml IFN-�: 0.269

± 0.017 HG + 100 U/ml IFN-�: 0.258 ± 0.011 p < 0.01

n = 5) while adding 500 U/ml IFN-� overinhibited

HMC proliferation (HG + 500 U/ml IFN-�: 0.235 ± 0.011

vs. NG: 0.244 ± 0.030). These results suggest that

IFN-� inhibits the overproliferation of HMCs induced

by HG in a dose-dependent manner. Figure 1B shows

that 50 µmol/l fludarabine decreases HMC prolifera-

tion when the cells are cultured in NG (NG: 0.233

± 0.019 vs. NG + 50 µmol/l fludarabine: 0.130

± 0.015 p < 0.01 n = 5) but that it has no significant

effect when the cells are treated with HG and IFN-�.

IFN-� decreases the upregulated mRNA levels

of TGF-�1 and CTGF induced by high glucose

To examine the antifibrotic effects of IFN-� on HMCs

treated with high glucose, we focused on TGF-�1

mRNA and CTGF mRNA. As shown in Figure 2,

HMCs in the HG group showed a significantly higher

mRNA level of TGF-�1 than the NG group (NG:

0.575 ± 0.034 vs. HG: 0.845 ± 0.088, p < 0.01 n = 3).

Both 10 U/ml and 100 U/ml of IFN-� significantly

suppressed the upregulation of TGF-�1 mRNA (HG:

0.845 ± 0.088 vs. HG +10 U/ml IFN-�: 0.733 ± 0.028

p < 0.05 n = 3; HG: 0.845 ± 0.088 vs. HG +100 U/ml

IFN-�: 0.664 ± 0.009 p < 0.01 n = 3). The HG-

induced upregulation of CTGF mRNA was attenuated

by 100 U/ml IFN-� (HG: 0.608 ± 0.100 vs. HG + 100 U/

ml IFN-�: 0.393 ± 0.080; p < 0.05 n = 3). IFN-� de-

creased the upregulated mRNA levels of TGF-�1 and

CTGF induced by high glucose in a dose-dependent

manner.

IFN-� reduces the syntheses of TGF-�1 and

CTGF proteins induced by high glucose

To further confirm the antifibrotic effects of IFN-� on

HMCs, we investigated the changes of TGF-�1 and

CTGF proteins by western blot analysis. As shown in

Figure 3, HG induced the overexpression of the

TGF-�1 and CTGF proteins (TGF-�1, NG: 1.243

± 0.279 vs. HG: 1.825 ± 0.252, p < 0.01 n = 3)

(CTGF, NG: 0.999 ± 0.127 vs. HG: 1.815 ± 0.166, p <

0.01 n = 3). The overexpression of TGF-�1 and

CTGF were attenuated by 10 U/ml IFN-� (TGF-�1,

HG: 1.825 ± 0.252 vs. HG + 10 U/ml IFN-�: 1.203 ±

0.220 p < 0.05 n = 3) (CTGF, HG: 1.815 ± 0.166 vs.
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HG + 10 U/ml IFN-�: 1.290 ± 0.240; p < 0.01 n = 3).

The addition of 100 U/ml IFN-� was more effective

than 10 U/ml IFN-� (TGF-�1, HG: 1.825 ± 0.252 vs.

HG + 100 U/ml IFN-�: 1.151 ± 0.037 p < 0.01 n = 3)

(CTGF, HG: 1.815 ± 0.166 vs. HG + 100 U/ml IFN-�:

1.075 ± 0.330; p < 0.01 n = 3). These results confirm

that IFN-� decreases the syntheses of the fibrotic cyto-

kines TGF-�1 and CTGF in HMCs treated with high

glucose in a dose-dependent manner.

HG + 10 U/ml IFN-�: 1.290 ± 0.240; p < 0.01 n = 3).

The addition of 100 U/ml IFN-� was more effective

than 10 U/ml IFN-� (TGF-�1, HG: 1.825 ± 0.252 vs.

HG + 100 U/ml IFN-�: 1.151 ± 0.037 p < 0.01 n = 3)

(CTGF, HG: 1.815 ± 0.166 vs. HG + 100 U/ml IFN-�:

1.075 ± 0.330; p < 0.01 n = 3). These results confirm

that IFN-� decreases the syntheses of the fibrotic cyto-

kines TGF-�1 and CTGF in HMCs treated with high

glucose in a dose-dependent manner.

Effects of the regulation of P-STAT1 on TGF-�1

and CTGF

To study the molecular mechanism for the protective ef-

fect of IFN-� on HMC, the JAK2-STAT1 pathway was

regulated by IFN-� and fludarabine. In Figure 4,

P-STAT1 was significantly higher in the HG + 100 U/ml

IFN-� group than in the HG group (HG + 100 U/ml

IFN-�: 2.545 ± 0.323 vs. HG: 1.929 ± 0.268, p < 0.05

n = 3) while the upregulation of P-STAT1 was de-

creased by 50 µmol/l fludarabine (HG + 100 U/ml

IFN-�: 2.545 ± 0.323 vs. HG + 100 U/ml IFN-� + 50 µmol/

l fludarabine: 1.937 ± 0.119, p < 0.05 n = 3). The pro-

tein levels of JAK2, P-JAK2, and STAT1 remained

unchanged. Moreover, as shown in Figure 4, the over-

expression of TGF-�1 and CTGF proteins induced by

high glucose was decreased by 100 U/ml IFN-�

(TGF-�1 HG: 2.788 ± 0.466 vs. HG + 100 U/ml

IFN-�: 1.600 ± 0.248 p < 0.05 n = 3) (CTGF HG:

2.159 ± 0.157 vs. HG + 100 U/ml IFN-�: 1.368 ± 0.386

p < 0.05 n = 3). However, the levels of both proteins

were increased by the addition of 50 µmol/l fludara-

bine (TGF-�1 HG + 100 U/ml IFN-�: 1.600 ± 0.248

vs. HG + 100 U/ml IFN-� + 50 µmol/l fludarabine:

2.393 ± 0.437 p < 0.05 n = 3) (CTGF HG + 100 U/ml

IFN-�: 1.368 ± 0.386 vs. HG + 100 U/ml IFN-� + 50 µmol/l

fludarabine: 2.054 ± 0.212 p < 0.05 n = 3). When

IFN-� phosphorylated STAT1, the levels of TGF-�1

and CTGF decreased, and when fludarabine inhibited

the activation of STAT1, the levels of TGF-�1 and

CTGF increased. These results indicate that IFN-�

suppresses the increase of TGF-�1 and CTGF pro-

teins induced by high glucose through the activation

of STAT1.

Discussion

Given the central role of IFN-� in reducing fibrosis,

the effect of IFN-� on the declining renal function in
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DN is a subject of considerable interest. The antipro-

liferative effect of IFN-� has been investigated in

many cell types, such as mouse embryo fibroblast

cells, pancreatic stellate cells and rat mesangial cells

[9, 14, 20]. Because of the vital role of HMCs in DN,

we examined the effect of IFN-� on the HMCs treated

with high glucose. We found that IFN-� inhibited the

overproliferation of HMCs induced by HG in a dose-

dependent manner. The appropriate concentrations

were 10 U/ml and 100 U/ml while 500 U/ml IFN-�

was excluded from our following experiments

because it was harmful to the normal growth of

HMCs. TGF-�1 and CTGF secreted by HMCs have

paracrine actions in renal interstitial fibrosis [16, 26].

Our results showed that addition of either 10 U/ml or

100 U/ml IFN-� decreased the mRNA and protein lev-

els of TGF-�1 and CTGF. HMC overproliferation and

secretions of fibrotic cytokines are important in inter-

stitial fibrosis, which leads to the declining renal

function in DN [7, 27]. Treatment with IFN-� could

possibly improve the renal interstitial fibrosis in DN

effectively.

STAT1 is implicated in the inhibition of cell prolif-

eration in several cell systems. STAT1 activation has

an important role in fibroblast growth arrest, and mice

deficient in STAT-1 have increased susceptibility to

bleomycin-induced lung fibrosis, indicating that

STAT-1 plays a protective role during fibrogenesis [1,

2, 25]. We have shown that the inhibition of the

JAK2/STAT pathway is helpful in treating DN [8].

However, the STATs are a family of seven latent cyto-

plasmic proteins that differentially regulate the ex-

pression of numerous genes involved in several cell

functions. For example, STAT1 and STAT3 have op-

posite functions [3, 22, 23]. We have shown that

IFN-� activates STAT1, inhibits the overproliferation

of HMCs, and decreases the high levels of TGF-�1

and CTGF proteins induced by HG. The levels of the

fibrotic cytokines TGF-�1 and CTGF changed with

the regulation of P-STAT1: they decreased when

IFN-� activated STAT1 and increased when the acti-

vation of STAT1 was inhibited by fludarabine. Inter-

estingly, 50 µmol/l fludarabine inhibited the activa-

tion of STAT1 and decreased the excretion of cyto-

kine TGF-�1 and CTGF in HMCs treated with high

glucose. Fludarabine reduced HMC proliferation in

NG but failed to inhibit cell proliferation when HMCs

were treated by HG or IFN-�. However, fludarabine is
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a specific inhibitor of STAT1 and has cell cytotoxicity

[10, 11]. Our studies indicate that its cytotoxicity was

neutralized by the antiproliferative effect of the acti-

vated STAT1. Previous studies have shown that IFN-�

did not inhibit the growth of U3A cells, which are de-

ficient in STAT1 [3], and the cytotoxicity of fludara-

bine is associated with a specific depletion of STAT1

in B-CLL cells [11]. These reports indicate that

STAT1 is a protective factor. As the activator of

STAT1, IFN-� could activate STAT1 to suppress cell

proliferation and decrease the production of the fi-

brotic cytokines TGF-�1 and CTGF in HMCs treated

with high glucose.

Cooker observed that IFN-� had no effect on either

CTGF or collagen activity and produced a mild inhi-

bition of TGF-�1-induced production of collagen

only at a high concentration (500 U/ml) [4]. However,

we have shown that IFN-� activates STAT1 to de-

crease the excessive excretion of TGF-�1 induced by

high glucose. Additionally, there is also a decrease in

the levels of CTGF, which is a downstream cytokine

of TGF-�1. A different effect of IFN-� on fibrosis in

other cell type has been reported. Nareika showed that

high glucose and IFN-� had a synergistic effect on

MMP-1 expression by enhancing STAT1 phosphory-

lation and STAT1 transcriptional activity in U937

macrophages [18].

We think that appropriate concentrations of IFN-�

may improve renal interstitial fibrosis, which can be

difficult to treat in DN therapy. The regulation of

STAT1 can possibly provide a new path in the investi-

gation of renal interstitial fibrosis in DN. However, it

is crucial to investigate the safety and feasibility of

such a therapy with further experiments in clinically

relevant animal model.
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