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Abstract:

The neurodevelopmental hypothesis of many brain disorders is based on the notion that environmental factors have significant effects

on brain maturation. Because serotonin (5-HT) dysfunction in development may be involved in disease etiology, the present investiga-

tion assessed the effects of neonatal 5-HT depletion on prepulse inhibition of the startle response (PPI) in rats. Three-day-old Sprague-

Dawley rats were pretreated with desipramine (20 mg/kg), followed by an intraventricular injection of the selective 5-HT neurotoxin

5,7-dihydroxytryptamine (5,7-DHT, 70 µg dissolved in 2 µl of 0.1% saline solution in ascorbic acid) on each side. Three months later,

the rats’PPI was tested. Despite a severe and permanent decrease (80–100%) in hippocampal, prefrontal and striatal 5-HT levels, treat-

ment with 5,7-DHT caused no disruption of PPI. In contrast to this lack of effect, the 5,7-DHT treatment increased basal startle activity,

as measured in response to a 120 dB stimulus. Thus, our results clearly indicate that neonatal 5-HT depletion does not interrupt prepulse

inhibition in rats. Studies involving lesions of brain structures or chemical systems run the risk of inducing compensatory changes in

brain function, resulting in an amelioration of any deficit. The development of such compensatory mechanisms seems likely in the cur-

rent study, due to the severe and long-lasting effect of neonatal 5,7-DHT-induced reduction on 5-HT levels.
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Abbreviations: 5-HIAA – 5-hydroxyindoleacetic acid, 5-HT –

serotonin, 5,7-DHT – 5,7-dihydroxytryptamine, DA – dopa-

mine, DHBA – dihydroxybenzylamine, DMI – desipramine

hydrochloride, DOPAC – 3,4-dihydroxyphenylacetic acid,

GABA – �-aminobutyric acid, HPLC – high pressure liquid

chromatography, HVD – homovanillic acid, MDMD – dihy-

droxyphenylacetic acid, 3,4-methylenedioxymethamphetamine,

NA – noradrenaline, pCPA – p-chlorophenylalanine, PPI – pre-

pulse inhibition of startle response

Introduction

The neurodevelopmental hypothesis of many brain

disorders is based on the theory that environmental

factors can have a significant impact on the processes

required for brain maturation. Consequently, different
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pharmacological (i.e., brain lesions) and non-pharma-

cological (i.e., isolation rearing and prenatal stress)

models have been developed to study pharmacological

manipulations of different transmitter systems [14, 21].

One of the most frequently used behavioral tests

for assessing the inability to ignore irrelevant external

stimuli is the prepulse inhibition paradigm (PPI). PPI

refers to the decreased startle response to an intense

stimulus (pulse) when this stimulus is immediately

preceded by a weaker pre-stimulus (prepulse). Im-

paired sensorimotor gating, as reflected by altered

PPI, has been reported to lead to thought disorders

and cognitive dysfunctions [3, 6, 17, 37], such as

schizophrenia [4, 25, 53], obsessive-compulsive dis-

order [47], Huntington’s disease [49], nocturnal enu-

resis and attention deficit hyperactivity disorder [35],

Tourette’s syndrome [7], blepharospasm [16], non-

epileptic seizure disorder [39] and post-traumatic

stress disorder [18].

PPI is modulated by several brain systems. These

systems include dopamine, glutamate, acetylcholine,

�-aminobutyric acid (GABA) and serotonin (5-HT)

[14, 23]. A number of pharmacological agents that

enhance 5-HT neurotransmission can disrupt PPI.

These agents include the 5-HT releasers fenfluramine,

p-chloroamphetamine, and 3,4-methylenedioxymeth-

amphetamine (MDMD) [20]. Selective activation of

5-HT�� [43, 44], 5-HT�� [45, 46] and 5-HT�� receptors

[36,44] also has a disruptive effect on PPI. Interest-

ingly, systemic or intracerebral administration of 5,7-

dihydroxytryptamine (5,7-DHT) and p-chlorophenyl-

alanine (pCPA) leads to a reduction in 5-HT levels,

thereby resulting in disruption of PPI [12, 40]. This

finding, together with those demonstrating similar ef-

fects following 5-HT agonist treatment, shows that

5-HT does not exert a bidirectional influence on sen-

sorimotor gating; rather, it suggests that both increas-

ing and decreasing 5-HT activity disrupts PPI.

Because 5-HT continues to have regulatory func-

tions in the brain throughout adulthood, it is likely

that early disruptions of 5-HT transmission would

have important consequences for subsequent central

nervous system development, organization and func-

tion. Several studies suggest that neurodevelopmental

deficits induced by pre- or early postnatal events may

also be significant risk factors for developing a disor-

der later in life [31, 41, 42]. Thus, it is possible that

the loss of sensorimotor gating abilities may stem

from developmental abnormalities in different neuro-

transmitter systems and associated brain structures.

The purpose of this study is to determine whether

neonatal 5-HT lesions can produce deficits in pre-

pulse inhibition in rats. The extent of the lesions was

verified by quantification of monoamine levels using

high-pressure liquid chromatography (HPLC).

Materials and Methods

Animals

Rats were housed in a temperature-controlled room

(20–22°C) under a 12-h light/dark cycle (light on at

7:00 p.m.) and 60% relative humidity with access ad

libitum to the granulated food (Labofeed H; WPiK,

Kcynia, Poland) and tap water. All experiments were

carried out between 8:00 a.m. and 4:00 p.m. The treat-

ment of the rats was in accordance with the ethical

standards of European and Polish regulations. All

procedures were reviewed and approved by the local

Ethics Committee on Animal Studies.

Timed pregnant Sprague-Dawley rats were ob-

tained from a licensed breeder (Jagiellonian Univer-

sity Collegium Medicum, Kraków, Poland) and were

singly housed in clear plastic cages containing wood

chip bedding material. The age of newborn rats was

determined by checking for births every day at 8:00

a.m. and 4:00.p.m. Three days after birth (the day of

birth being postnatal day 0), the sex of the pups was

determined, and males were submitted to further ex-

perimentation, as described below.

Drugs

The drugs 5,7-dihydroxytryptamine creatinine sulfate

(5,7-DHT) and desipramine hydrochloride (DMI) were

purchased from Sigma-Aldrich, (St. Louis, USA). To

prevent oxidation, the 5,7-DHT neurotoxin was dis-

solved in 0.1% saline solution in ascorbic acid.

Neonatal lesion of 5-HT system with

5,7-dihydroxytryptamine

The detailed procedure was previously described by

Jessa et al. [19]. Briefly, male pups (n = 38) were in-

jected initially with DMI (20 mg/kg, ip), followed

60 min later by an intracisternal injection of 5,7-DHT.

Neonates were individually removed from the litter
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and, under ether anesthesia, were placed on a flat,

brightly illuminated surface. The sterile needle, hav-

ing a polyethylene sleeve up to 2 mm from the tip,

was positioned 1.5 mm anterior to lambda and 2 mm

lateral to the sagittal plane. After the needle was low-

ered into the two lateral ventricles, the 5,7-DHT solu-

tion was injected. The 5,7-DHT was administered at

a dose of 70 µg of free base that was dissolved in 2 µl

of 0.1% saline solution in ascorbic acid , in the vol-

ume of 2 µl on each side. Solvents were delivered

with a flow rate of 1 µl/30 s. After completion of each

infusion, the injector was left in place for 5 min to al-

low the neurotoxin to diffuse away from the site of in-

jection. Control sham rats (n = 36) received the DMI in-

jection and vehicle instead of 5,7-DHT. Dams were

maintained with the litters until 28 days of age, when

they were transferred (along with their foster littermates)

to group cages. The 5,7-DHT-treated and control pups

were weighed once a week. All experiments were car-

ried out when animals reached 3 months of age.

Apparatus

Four startle chambers (SR LAB San Diego Instruments,

San Diego, CA, USA) were used. Each startle chamber

was enclosed in a 37.5 × 40.0 × 57.5 cm isolated cabinet

and contained a transparent acrylic cylinder (inside di-

ameter: 8.8 cm, inside length: 18.4 cm) located on a 12.5

× 25.5 cm Plexiglas platform. Acoustic noise bursts

were presented via a loudspeaker mounted 24 cm

above the cylinder. Movements within the cylinder

were detected by a piezoelectric accelerometer at-

tached to the base and transduced into signals that

were rectified and recorded by computer. Sound lev-

els in the chambers were measured and adequately

calibrated with a sound meter. Response sensitivities

were calibrated using the SR-LAB Startle Calibration

System.

PPI testing

Test sessions began with placing the rat in the startle

chamber with background white noise set at 69 dB.

After a 5 min acclimation period, each subject was

presented with 4 iterations of 16 types of trials (64 tri-

als total): four background noise stimuli (69 dB for

40 ms), four prepulse stimuli (88 dB for 40 ms), four

startle stimuli (120 dB for 40 ms) and four prepulse

stimuli delivered 100 ms prior to a startle stimulus.

Administration of trial types was randomized within

each type of the four iterations, and the average inter-

trial interval was 25 s (range 20–30 s), across all 64

trials. Schematic representation of the PPI iteration is

illustrated in Figure 1. The amount of PPI was ex-

pressed as the percentage decrease in startle response

caused by presentation of the prepulse according to

the following formula: PPI = 100 – [(mean startle am-

plitude on prepulse + pulse trials/mean startle ampli-

tude on pulse alone trials) × 100]. Using this formula,

a 0% value indicates no difference between the pulse

alone and prepulse + pulse trials (i.e., no PPI). In-

creases in sensorimotor gating are reflected by higher

percentage PPI values.

Neurochemistry

One day (24 h) after the final behavioral session, all

rats were euthanized by decapitation, and their brains

were quickly removed and dissected on an iced glass

plate into three regions: the frontal cortex, the hippo-

campus and the striatum. Tissues were kept at –70°C

until being used for experimentation.

Serotonin (5-HT), 5-hydroxyindoleacetic acid (5-

HIAA), noradrenaline (NA), dopamine (DA), dihy-

droxyphenylacetic acid (DOPAC), and homovanillic

acid (HVD) levels were assayed simultaneously using

an HPLC system with electrochemical detection [24].
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Contents of monoamines were measured using liquid

chromatography with an electrochemical detection

HPLC system (Shimadzu, Japan) with a programma-

ble flow rate and an LC-9A pump equipped with

a 20 µl injection loop (Rheodyne, CA, USA). Separa-

tion of monoamines and their metabolites was carried

out on a Nucleosil 7C-1B column (Macherey-Nagel,

Germany) maintained at 32°C in a Shimadzu CTO-6A

column oven. Integration of the chromatograms was

performed with a Shimadzu C-R4AX Chromatopac-

computing integrator. Dihydroxybenzylamine (DHBA)

was used as an internal standard. The minimum level

of detection of DHBA was 0.5 ng/ml; this concentra-

tion was injected onto the column. Levels of mono-

amines and their metabolites (ng/g of wet tissue) were

subsequently calculated.

Statistical analysis

The statistical analysis was performed using the Sta-

tistica 7.0 software package (StatSoft, Inc., Tulsa,

USA). The startle magnitude of each session was av-

eraged and presented as the mean ± SEM. The le-

sions’ effect on the baseline startle magnitude and PPI

was evaluated using one-way ANOVA, followed by

the post-hoc Newman-Keuls test. A probability value

of p < 0.05 was considered to represent statistical sig-

nificance. For neurochemical analysis, the one-way

ANOVA was used. All post-hoc tests were performed

using the Newman-Keuls procedure. All testing hy-

potheses used the probability value 0.05 as the level

of significance.

Results

Effects of neonatal 5-HT depletion on startle

baseline amplitude and PPI

The effects of neonatal 5-HT depletion on the startle

baseline amplitude and PPI are shown in Figure 2.

One-way ANOVA analysis revealed that neonatal

5-HT depletion caused no disruption of PPI [F(1,72) =

0.10, p = 0.750]. In contrast, the 5,7-DHT treatment

led to an increase in basal startle activity, as measured

in response to the 120 dB stimulus depletion [F(1,72)

= 12.30, p < 0.01]. The mean level of sensorimotor

gating was 83.27% for the 5,7-DHT-lesioned rats

compared with 61.10% for the sham-operated rats.

Effects of neonatal 5-HT depletion on brain

monoamine levels

In the frontal cortex (Tab. 1), neonatal 5-HT depletion

was associated with significant reductions in 5-HT

levels [F(1,72) = 224.91, p < 0.01], 5-HIAA levels

[F(1,72) = 209.77, p < 0.01] and the ratio of 5-HIAA

to 5-HT [F(1,72) = 846.26, p < 0.01]. No significant

changes were observed in the NA, DOPAC, DA, HVA

and HVA/DA levels.

In the hippocampus (Tab. 1), neonatal 5-HT deple-

tion was associated with significant reductions in

5-HT levels [F(1,72) = 53.85, p < 0.01], 5-HIAA lev-

els [F(1,72) = 54.47, p < 0.01] and the ratio of

5-HIAA to 5-HT [F(1,72) = 17.25, p < 0.001]. No sig-
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nificant changes were observed in the NA, DOPAC,

DA, HVA and HVA/DA levels.

In the striatum (Tab. 1), neonatal 5-HT depletion was

associated with significant reductions in 5-HT levels

[F(1,72) = 208.85, p < 0.01], 5-HIAA levels [F(1,72) =

147.38, p < 0.01] and the ratio of 5-HIAA/5-HT

[F(1,72) = 183.84, p < 0.01]. No significant changes

were observed in the NA, DOPAC, DA, HVA and

HVA/DA levels.

Discussion

The most important discovery from this study was

that neonatal 5-HT depletion caused no disruption of

prepulse inhibition of the acoustic startle reflex in the

adult rat. In contrast to the effect on PPI, treatment

with 5,7-DHT increased basal startle activity, as

measured in response to the 120 dB stimulus.

While the cortico-limbic-striatal-pallidal circuitry

regulates the degree of inhibition by the prepulse, the

startle response is controlled by the brain stem [11,

48]. The primary startle pathway includes several nu-

clei of the pontine reticular formation and connections

with motoneurons of the spatial cord governing the

muscle contraction [23]. Several factors, such as

strain [50, 54], gender [2, 55], light cycle [13], or in-

ternal states, such as fear or anxiety [8], are known

to affect the amplitude of the startle reflex in the rat.

Furthermore, the fact that the startle amplitude is in-

creased in states of fear (fear potentiation) and de-

creased in a pleasant context (pleasure attenuation)

[22, 30] suggests that the startle reflex can be used to

evaluate emotional states [23, 32]. Several studies

have indicated that a reduction in brain 5-HT levels is

associated with an increased sensitivity to various

sensory stimuli [9, 10]. In our experiment, rats with

neonatal 5-HT depletion had increased startle re-

sponses compared to sham-operated controls. These

rats also revealed a decrease in social interaction and

novel object exploration as well as an increase in an-

ticipatory anxiety (unpublished data). Additionally,

the total distance traveled and distance traveled in the

central area of the open field test were significantly

shorter in rats with neonatal depletion of 5-HT. This

finding may suggest that fewer instances of novelty-

seeking behavior and fear of new experiences may be

responsible for the increased startle responses in rats

with neonatal 5-HT depletion.

Our results are consistent with those of Walters et

al. [52], who reported an increase in amplitude of the

acoustic startle reflex in rats given a tryptophan-free

diet. Only marked decreases in 5-HT levels (> 64%)

were able to elevate the startle amplitude, suggesting

that some critical level of 5-HT depletion must be

reached to increase basal startle activity. Chronic

treatment with the stimulant 3,4-methylenedioxy-

methamphetamine (MDMA) induced both a substan-

tial 5-HT depletion and a strong increase in the base-

line startle response in rats [33]. While rats with le-

sions in the median raphe nucleus tended to display

higher startle responses compared to controls, there

was no effect or trend toward an increase in rats with

dorsal raphe nuclear lesions [15, 26, 27]. In contrast,

injection of the neurotoxin 5,7-DHT into both the dor-

sal and median raphe nuclei did not alter basal startle
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Frontal cortex Hippocampus Striatum

5,7-DHT-lesioned
rats

Sham-operated
rats

5,7-DHT-lesioned
rats

Sham-operated
rats

5,7-DHT-lesioned
rats

Sham-operated
rats

5-HT 208.11 ± 22.43** 2358,9 ± 111.9 224.44 ± 27.22** 2422.9 ± 161.6 254.12 ± 54.12** 2567.7 ± 187.6

5-HIAA 143.22 ± 10.22 ** 1023.4 ± 32.1 102.23 ± 18.22** 946.9 ± 67.2 130.21 ± 10.11** 1245.9 ± 39.1

NA 286.4 ± 27.2 270.4 ± 32.1 232.7 ± 19.6 245.3 ± 32.9 355.32 ± 26.1 342.8 ± 21.7

DA 1243,2 ± 144.9 1352,9 ± 141.4 ND ND 11874.2 ± 511.34 12515.1 ± 678.4

DOPAC 191.4 ± 19.12 201.8 ± 18.2 ND ND 7532.1 ± 156.3 7658.1 ± 134.2

HVA 6234.1 ± 289.1 6123.9 ± 223.4 4134.5 ± 411.4 4221.8 ± 388.1 9111.1 ± 311.2 8987.2 ± 334.1



reactivity [12]. Unlike microinjections of the 5-HT��

receptor agonist 8-OH-DPAT into the dorsal raphe nu-

cleus [15], intraperitoneal administration of this selec-

tive agonist increased startle amplitude in rats [12].

No effect on startle responses was observed after

intraperitoneal injections of the tryptophan hydroxy-

lase inhibitor p-chlorophenylalanine (pCPA) [12, 40].

Finally, 5,7-DHT administration to the prefrontal cor-

tex and nucleus accumbens septi produced an increase

in baseline startle magnitude [34]. Taken together,

these data suggest that depletion of 5-HT can augment

the startle amplitude in rats. In our experiments, neo-

natal 5-HT depletion preferentially induced damage

to the basic startle pathway over the prepulse inbition

systems. Therefore, it appears that the effect of neona-

tal 5-HT depletion is probably on the basic startle re-

flex and not on the inhibitory pathways that modify

startle reactivity; this possibility is supported by the

PPI scores of neonatally 5,7-DHT-lesioned rats com-

pared to those of the sham-lesioned rats (Fig. 2).

Because 5-HT-depleted rats differ from their sham-

operated controls on a measure of reactivity to the

120 dB startle stimulus alone, enhanced basal startle

response may lead to an increase in sensorimotor gat-

ing (83.27% for the 5,7-DHT-lesioned rats vs. 61.10 %

for the sham-operated rats). However, it appears that

this neonatal 5,7-DHT-induced startle response is pri-

marily an augmentation of the basic startle reflex

rather than an effect on prepulse inhibition. A similar

effect was reported in rats with 5,7-DHT injections

into the nucleus accumbens [34].

In contrast to our results, recently published studies

provide strong evidence that pharmacologically-

induced depletion of 5-HT disrupts PPI. The 5-HT��

agonist 8-OH-DPTA has been reported to disrupt PPI

after local administration into the raphe nuclei, sug-

gesting that it acts on 5-HT�� somatodendritic recep-

tors and causes a decrease in 5-HT neurotransmission

[44]. Repeated treatment with the 5-HT synthesis in-

hibitor pCPA produced a small attenuation of PPI, but

when combined with the 5-HT releaser (+)-fenfl-

uramine, pCPA nearly abolished PPI [40]. Tryptophan

depletion, which is known to decrease 5-HT levels in

the central nervous system, attenuated PPI in humans

without affecting basal startle reactivity [38]. Dis-

rupted PPI was evident in animals treated either with

the serotonin neurotoxin 5,7-DHT or with the trypto-

phan hydroxylase inhibitor pCPA [12]. Rats with me-

dian but not with dorsal raphe nuclear lesions showed

marked and significant disruption of PPI [27], and

this effect was reversed by acute treatment with clo-

zapine and haloperidol [28]. Medial prefrontal cortex

and basolateral amygdala injections of 5,7-DHT had

no effects on PPI, but rats with 5,7-DHT-induced le-

sions of the central nucleus of the amygdala showed

pronounced disruptions of PPI [28]. Prepulse inhibi-

tion was significantly altered in rats with lesions on

the dorsal but not ventral hippocampus [29]. Finally,

5,7-DHT injections into the prefrontal cortex de-

creased PPI in rats [34]. In the present study, we ob-

served a severe and permanent reduction in hippo-

campal, prefrontal and striatal 5-HT levels (Tab. 1);

however, the depletion of 5-HT during neonatal de-

velopment did not affect the processing of PPI of the

acoustic startle reflex in the adult rat. While the rea-

son for this inconsistency is unclear, some discrepan-

cies may be attributable to animal-related factors, in-

cluding the selection of the strain, sex, and age of rats

being used, the impact of past startle experience, and

the possible contribution of the developmental history

of the animals prior to testing. Furthermore, when

comparing findings across different laboratories, seri-

ous consideration must be given to basic methodo-

logical factors, such as the selectivity or potency of

the drugs or manipulations for the serotonergic sys-

tem, the test environment, stimulus parameters, pro-

cedures, experimental designs, equipment, and meas-

ures used to quantitate both startle response and PPI.

The predictive validity of the 5-HT model of PPI dis-

ruption appears to be weakened by results from human

subjects [4]. Specifically, the 5-HT releaser MDMA in-

creases PPI in humans, rather than disrupting PPI, as

observed in rats [51]. Nevertheless, because the ef-

fects of MDMA on PPI in humans appear to be the

opposite of those seen in rats, the predictive validity

of the 5-HT model of PPI disruption is compromised

at present.

In conclusion, our results clearly indicate that neo-

natal 5-HT depletion does not interrupt prepulse inhi-

bition in rats. Studies involving lesions of brain struc-

tures or chemical systems run the risk that inducing

compensatory changes in brain function can lead to

amelioration of any deficit. Such compensatory

changes have previously been reported following

5,7-DHT-induced damage to 5-HT neurons [1]. The

development of such compensatory mechanisms

seems possible in our experiment because the ability

of neonatal 5,7-DHT-induced reductions in 5-HT lev-

els to reduce PPI was severe and long-lasting.
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