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Abstract:

The aim of the present study was to evaluate the effect of low-dose spironolactone initiated during the early stages of hypertension

development and to assess the effects of chronic pressure overload on ventricular remodeling in rats. Male spontaneously hyperten-

sive rats (SHRs) (4 weeks) were randomized to receive daily spironolactone (20 mg/kg) or vehicle (mineral oil) from 4 weeks to

8 months of age. Systolic blood pressure was measured non-invasively by tail-cuff pletysmography at baseline, 4 and 8 months. He-

modynamic assessment was performed at the end of treatment by arterial and ventricular catheterization. An in situ left ventricular

pressure-volume curve was created to evaluate dilatation and wall stiffness. Systolic blood pressure at 1 month of age was higher in

SHRs than in the Wistar group; it increased throughout the follow-up period and remained elevated with treatment (Wistar: 136 ± 2,

SHR: 197 ± 6.8, SHR-Spiro: 207 ± 7.1 mmHg; p < 0.05). Spironolactone reduced cardiac hypertrophy (Wistar: 1.25 ± 0.03 SHR:

1.00 ± 0.03, SHR-Spiro: 0.86 ± 0.02 g; p < 0.05) and left ventricular mass normalized to body weight (Wistar: 2.51 ± 0.06, SHR: 2.70

± 0.08, 2.53 ± 0.07 mg/g; p < 0.05). Moreover, the left ventricular wall stiffness that was higher in SHRs was partially reduced by spi-

ronolactone treatment (Wistar: 0.370 ± 0.032; SHR: 0.825 ± 0.058; SHR-Spiro: 0.650 ± 0.023 mmHg/ml; p < 0.05). Our results show

that long-term spironolactone treatment initiated at the early stage of hypertension development reduces left ventricular hypertrophy

and wall stiffness in SHRs.
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Abbreviations: ACE – angiotensin converting-enzyme, ANOVA

– analysis of variance, DBP – diastolic blood pressure, HF –

heart failure, HR – heart rate, LV – left ventricle, LVEDP – left

ventricular end-diastolic pressure, LVSP – left ventricular sys-

tolic pressure, RAAS – renin-angiotensin-aldosterone system,

SBP – systolic blood pressure, SEM – standard error of mean,

SHRs – spontaneously hypertensive rats

Introduction

Hypertension is a common risk factor for heart failure

(HF) and is associated with high mortality rates [18].

Activation of the renin-angiotensin-aldosterone sys-

tem (RAAS) in hypertension directly affects cardiac re-
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modeling, leading to interstitial and perivascular fi-

brosis, cardiomyocyte hypertrophy and apoptosis [17,

28]. Furthermore, hypertension increases plasmatic

aldosterone levels [25], leading to left ventricular

(LV) hypertrophy and myocardial fibrosis [15, 18].

Several studies have shown that aldosterone is pro-

duced not only in the adrenal cortex but also in the

heart and blood vessels [27].

Experimental studies in rats have shown increased

cardiac production of aldosterone and its receptor in dif-

ferent models of HF, such as myocardial infarction [21].

Similar findings have been observed in spontaneously

hypertensive rats (SHRs), which develop HF after

a compensated phase of cardiac function [12]. SHRs are

used widely as models of essential hypertension due to

their development of high blood pressure levels and car-

diac and vascular remodeling [22], with cardiac hyper-

trophy [27] and increased collagen deposition [23].

Spironolactone, a mineralocorticoid receptor an-

tagonist, has been used in humans for the treatment of

hypertension and heart failure, with a resulting marked

reduction in cardiovascular events [20]. Our group has

shown that spironolactone reduces collagen deposition

after coronary occlusion [15] and also reduces LV stiff-

ness in adult hypertensive rats submitted to a high salt

diet [2]. Mineralocorticoid receptor antagonism also

ameliorates cardiac dysfunction in old SHRs [23].

Moreover, it has been shown that mineralocorticoid an-

tagonists and renin-angiotensin system inhibitors given

as a combination therapy can produce improvements in

fibrosis and hypertrophy in hypertensive animals [3].

Studies of spironolactone use in hypertensive rats

have been conducted mostly after short-term exposure

to the drug, which would be considered an unusual sce-

nario for clinical studies. Furthermore, studies with

long-term treatment were initiated after hypertensive

heart disease was already established. However, the

early and long-term use of spironolactone to prevent

cardiac remodeling in hypertension remains unknown.

Therefore, the aim of this study was to evaluate the

long-term effects on cardiac structure and function in

SHRs treated with a low spironolactone dose initiated

at early stages of hypertension development.

Materials and Methods

Animals and treatment

Animals were provided by our department colony at

Federal University of Espírito Santo. During all treat-

ment periods, the animals had free access to food and

drinking water. All protocols were performed in ac-

cordance to the Guide for the Care and Use of Labora-

tory Animals (NIH Publication No. 85–23, revised

1996) and the ethical principles in animal experimen-

tation of the Brazilian College of Animal Experimen-

tation (COBEA), and this study was approved by the

institutional Committee of Ethics on Animal Research

(No. 012/2010).

One-month-old SHRs were randomly selected to

receive 20 mg/kg per day of spironolactone (SHR-

Spiro, 0.2 ml, sc/day, dissolved in mineral oil; n = 8)

or only the vehicle (SHR; 0.2 ml, sc/day, n = 9).

Aged-matched Wistar rats (n = 8) were used as nor-

motensive controls. The injection site was often ro-

tated to reduce the risk for a potential inflammatory

reaction. The animals were weighed weekly to make

any necessary adjustments to the drug dose.

Non-invasive blood pressure assessment

Non-invasive measurement of tail-cuff pressure as an

estimate of systolic arterial pressure was done at base-

line (1 month) and at 4 and 8 months of age. Rats

were warmed in a restraining chamber, and occluding

cuffs and pneumatic pulse transducers were placed on

the rat tail. A sphygmomanometer was inflated and

deflated automatically, and the tail-cuff signals from

the transducer were automatically collected using an

IITC apparatus (IITC Inc., California, USA) con-

nected to a computer. For each blood pressure meas-

urement session, the mean of eight blood pressure

readings was recorded for each rat.

Hemodynamic measurements

At eight months of age (following seven months of

treatment), animals were anesthetized with ketamine

(Agener União, Brazil) and xylazine (Bayer, Brazil)

(70/10 mg/kg, ip) to obtain hemodynamic data. The

right common carotid artery was catheterized with

a fluid-filled polyethylene catheter (P50) connected to

a pressure transducer (TRI 21, Letica Scientific In-

struments, Spain) and a digital system (Powerlab/4SP

ML750, ADInstrument, Australia). The systolic

(SBP) and diastolic (DBP) blood pressure and heart

rate (HR) were initially measured in the aorta. The

catheter was then advanced into the left ventricular

cavity to record systolic (LVSP) and end-diastolic

(LVEDP) pressures. The maximum rate of pressure
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rise and fall (dP/dt max and min, respectively) was

obtained electronically, and all records were obtained

at 2 kHz.

In situ left ventricular pressure-volume

relationship

After hemodynamic evaluation, the heart was arrested

with 3 M KCl (0.2 ml, iv), and a double-lumen cathe-

ter (P50 inserted into P200) was inserted into the left

ventricle through the aorta to obtain the in situ left

ventricle diastolic pressure-volume relationship, as

previously described [2]. In brief, the atrio-ventricular

groove was occluded, and a small incision was made

in the right ventricular free wall to avoid liquid accu-

mulation inside this cavity and any compressor effect

on the left ventricular chamber. Physiological saline

(NaCl 0.9%) was pumped (BI 200, Insight Equip-

ments, Brazil) into the left ventricular cavity at a con-

stant rate (0.68 ml/min) through the P200 catheter up

to a pressure of 30 mmHg, which was continuously

monitored through the P50 catheter. Then, the left

ventricle cavity was emptied, and another pressure-

volume curve was obtained. Three curves were re-

corded in each heart over ten minutes.

The curves were separated into two parts to ex-

clude possible interferences of dilatation on the stiff-

ness index [2]. In the first segment, from 0 to 5 mmHg,

the pressure curve followed a linear pattern during

volume infusion, and the slope was proportional to

the left ventricular dilatation. In the second segment,

from 5 to 30 mmHg, the pressure increase during vol-

ume infusion followed a monoexponential pattern

(P = V� × e��), where V� is the volume at 5 mmHg, k

is the stiffness constant of the chamber and v is the

volume infused. To determine the stiffness constant in

the 5–30 mmHg interval without the interference of

the first segment, the pressure scale was log-trans-

formed. Therefore, the slope of the linear relationship

between pressure and volume represents the stiffness

constant of the left ventricular cavity.

After pressure-volume recording, the heart was re-

moved, and the ventricles were separated, blotted and

weighed. Hypertrophy was evaluated by the ventricle

to body weight ratio.

Statistical analysis

The data are presented as the mean ± standard error of

the mean (SEM). One or two way analysis of variance

(ANOVA) was used to compare the means of three

groups, as appropriate, followed by the Fischer post-

hoc test. The Pearson correlation was used to deter-

mine whether an association existed between two

or more variables. Statistical significance was set at

p < 0.05.

Results

Morphometric parameters

After seven months, Wistar rats were heavier than the

rats in the SHR groups (Wistar: 497 ± 14 g, SHR: 361

± 7 g, SHR-Spiro: 338 ± 5 g; p < 0.05). Table 1 de-

picts the morphological parameters found after seven

months of treatment. Spironolactone reduced crude

left ventricular weight in SHRs (Wistar: 1250 ± 30;

SHR: 1000 ± 30; SHR-Spiro: 860 ± 20 g; p < 0.05)

and left ventricular mass normalized to body weight

(Wistar: 2.51 ± 0.06; SHR: 2.70 ± 0.08; SHR-Spiro:

2.53 ± 0.07 mg/g; p < 0.05). The other parameters, RV

and lungs, were not significantly different between

SHR groups.

Hemodynamic evaluation

Using a non-invasive method, we observed that one-

month-old SHRs (before treatment) showed higher

systolic blood pressure than Wistar rats (Wistar: 115 ±

3, SHR: 130 ± 10, SHR-Spiro: 129 ± 6 mmHg; p <

0.05). The systolic blood pressure increased progres-

sively during the observation period, without a sig-
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Tab. 1. Morphological parameters after 7 months of follow up

Wistar
(n = 8)

SHR
(n = 9)

SHR-Spiro
(n = 8)

LV (mg)

LV/BW (mg/g)

RV (mg)

RV/BW (mg/g)

Lungs (mg)

Lungs/BW
(mg/g)

1250 ± 30

2.51 ± 0.06

254 ± 12

0.50 ± 0.07

3100 ± 90

6.2 ± 0.3

1000 ± 30*

2.70 ± 0.08*

202 ± 14*

0.50 ± 0.03

2500 ± 170*

7.0 ± 0.6

860 ± 20*�

2.53 ± 0.07*�

185 ± 13*

0.54 ± 0.03

2550 ± 100*

7.2 ± 0.3

* p < 0.05 vs. Wistar; � p < 0.05 vs. SHR



nificant difference between the spironolactone-treated

and the untreated SHR groups (Fig. 1). The hemody-

namic parameters obtained in anesthetized animals

are shown in Table 2. Additionally, spironolactone did

not significantly affect blood pressure in the treated

SHR group. As expected, the left ventricular systolic

pressure was higher in SHRs than in Wistar rats.

Moreover, LVEDP was also significantly higher in the

SHR groups than in the Wistar rats. Left ventricular

contractility and relaxation were assessed by +dP/dt

max and –dP/dt min, respectively. The indexes of the

systolic and diastolic performance of the left ventricle

were slightly higher in SHRs (without statistical sig-

nificance), and both were unaffected by spironolac-

tone treatment.
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Fig. 1. Non-invasive measurement of systolic blood pressure by tail-
cuff plethysmography. � p < 0.05 vs. SHR, � p < 0.05 vs. SHR-Spiro

Tab. 2. Hemodynamic parameters in anesthetized SHRs

Wistar
(n = 8)

SHR
(n = 9)

SHR-Spiro
(n = 8)

HR (bpm)

SBP (mmHg)

DBP (mmHg)

LVSP (mmHg)

LVEDP (mmHg)

+dP/dt max (mmHg/s)

-dP/dt max (mmHg/s)

192 ± 8

109 ± 2

76 ± 3

113 ± 2

4 ± 1

4854 ± 101

–3698 ± 92

235 ± 17*

139 ± 3*

93 ± 7*

150 ± 3*

7.3 ± 1*

5225 ± 74

–4036 ± 166

260 ± 22*

130 ± 3*

88 ± 4*

149 ± 4*

7.7 ± 2*

5145 ± 101

–3972 ± 139

* p < 0.05 vs. Wistar

Fig. 2. Left ventricular in situ pressure-volume relationship. The entire
curves (A) were divided into two segments to evaluate the left ven-
tricular dilatation (B) and wall stiffness (C). * p < 0.05 vs. Wistar; � p <
0.05 vs. SHR



Left ventricular pressure-volume relationship

The pressure-volume curve (Fig. 2A) was divided into

two segments for analysis. The first segment (0–5

mmHg) was fitted to a linear regression (Fig. 2B), and

the inclination gives a dilatation index of the left ven-

tricular cavity. The second segment (5–30 mmHg)

was adjusted to a monoexponential model (pressure =

V� × e��), with k giving the left ventricular stiffness

index (Fig. 2C). According to this model, the left ven-

tricular dilatation index was similar for all groups

(Wistar = 6.5 ± 1.2; SHR = 8.2 ± 1.5; SHR-Spiro =

7.2 ± 1.1 mmHg/ ml, p = 0.09; Fig. 2B), despite

a trend toward higher values in SHRs. The ventricular

stiffness, however, was significantly higher in SHRs

compared to Wistar rats, and spironolactone treatment

partially prevented ventricle stiffening in hyperten-

sive animals (Wistar: 0.370 ± 0.032; SHR: 0.825 ±

0.058; SHR-Spiro: 0.650 ± 0.023 mmHg/ml; p < 0.05;

Fig. 2C). Figure 3 shows a significant association be-

tween left ventricular hypertrophy (assessed by left

ventricle weight to body weight ratio) and stiffness in-

dex (r = 0.606; p < 0.05).

Discussion

Hypertension produces adaptive changes in the car-

diovascular system due to pressure overload, which

commonly leads to heart failure. The development of

left ventricular hypertrophy and the stiffening of the

left ventricular chamber results in diastolic dysfunc-

tion that facilitates heart failure progression and an in-

creased risk of death.

The structural rearrangement that occurs in the left

ventricular wall due to chronic pressure overload de-

termines the degree of ventricular stiffening, thus af-

fecting the systolic and diastolic function of the heart

chambers [26]. It is already known that RAAS in-

duces left ventricular remodeling [30]. Moreover,

both angiotensin-converting enzyme (ACE) inhibitors

and/or AT� receptor blockers are able to prevent the

development of cardiac hypertrophy in hypertensive

rats [22] as well as reduce cardiac hypertrophy in hu-

mans [1]. Studies have shown that aldosterone partici-

pates directly in several processes of ventricular re-

modeling. Okoshi et al. [17] have shown that aldoster-

one produces cardiomyocyte hypertrophy in in vitro

conditions. Furthermore, in some clinical trials, al-

dosterone receptor blockers have been shown to re-

verse cardiac hypertrophy in several cardiovascular

diseases [9, 19]. Unfortunately, these findings have

not yet been translated to clinical practice [14].

Aldosterone antagonists exert beneficial effects in

hypertensive rats. For example, Baumann et al. [3]

treated SHRs with spironolactone or the angiotensin

II receptor blocker losartan in the prehypertensive

phase of 4 weeks, after which the drugs were discon-

tinued. Following a drug wash-out period, it was ob-

served that cardiac fibrosis was reduced by both treat-

ments. However, cardiac hypertrophy was reduced

only by losartan. The spironolactone dose used by

Baumann et al. [3] was lower (1 mg/kg) than the dose

used in our study (20 mg/kg). Thus, we found less

ventricular hypertrophy than expected in spironolac-

tone-treated SHRs. Furthermore, this short, 4-week

treatment period of SHRs only during the prehyper-

tensive stage followed by drug discontinuation was

recently studied by our group. We showed that ACE

inhibition with captopril was effective in reducing

ventricular and arterial remodeling during the treat-

ment period, but not after the drug was withdrawn

[22]. In the present study, spironolactone was admin-

istered long-term, and the same dose was maintained

throughout the treatment period. This strategy avoids

a possible loss of drug effect over time.

Conversely, Kambara et al. [11] showed that in

a rat model of spontaneous hypertension and heart

failure, daily spironolactone (20 mg/kg) was ineffec-

tive in reducing cardiac hypertrophy and fibrosis, un-

like the results seen after treatment with captopril. In

our study, the treatment was initiated in an early phase

of blood pressure increase and cardiac hypertrophy

development. Thus, our results regarding cardiac hy-

pertrophy seem not to be through a regressive effect

but potentially through slowness in the hypertrophic

signaling. Our results also suggest that the beneficial

effects in ventricular hypertrophy reduction are inde-

pendent of blood pressure changes.

It is already known that SHRs present hyperactiva-

tion of the sympathetic nervous system from the pre-

hypertensive phase [6, 7], as is observed with the in-

creased heart rate found in SHRs in our study. It has

been reported that aldosterone antagonists prevent

the degeneration of left ventricular function, collagen

deposition and hypertrophy induced by chronic �-

adrenergic activation in SHRs [4, 29]. This pathway

might partially explain our results regarding LV hy-

pertrophy.
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Changes in the extracellular myocardial matrix can

lead to ventricular stiffening. For example, in patients

with mild dilated cardiomyopathy, spironolactone re-

duced left ventricular stiffness and fibrosis [10]. Some

studies have shown the ability of aldosterone antago-

nists to decrease collagen deposition in the myocar-

dium of hypertensive rats [3, 23]. Moreover, in a model

of pressure overload by aortic constriction, eplere-

none, a new selective mineralocorticoid receptor

blocker, reduced ventricular and perivascular fibrosis

and hypertrophy [13]. Additionally, it was reported

that eplerenone administration to Dahl salt-sensitive

rats in the compensatory hypertrophic phase reduced

cardiac hypertrophy and ventricular stiffness [16].

Our group recently reported that adult hypertensive

rats present with an enhanced left ventricular stiffness

phenotype and that high dose spironolactone abro-

gates this effect [2]. Our results showed that SHRs

(8 months of age) had higher left ventricular stiffness

compared to normotensive controls. Furthermore,

we have also found that spironolactone reduces left

ventricular stiffness in SHRs. Correlation analysis

showed a significant association between left ven-

tricular hypertrophy and stiffness. This fact reinforces

the idea that left ventricular hypertrophy also contrib-

utes to an increase in chamber stiffness in SHRs.

Therefore, the antihypertrophic effect of long term

spironolactone use in these animals may also contrib-

ute to stiffness reduction.

However, another parameter related to ventricular

relaxation, –dP/dt max, remained unchanged in our

study. It is important to point out that hemodynamic

variables are influenced by anesthesia. In fact, anes-

thesia exerts greater effects in SHRs than Wistar rats

because of the high sympathetic hyperactivity found

in SHRs, which can be inferred in our data by the

lower heart rate observed in these animals. A higher

sympathetic drive to the heart tends to accelerate cal-

cium reuptake in the sarcoplasmic reticulum and,

thus, increases –dP/dt max. Therefore, the reporting

of hemodynamic variables under anesthesia repre-

sents a limitation of our study.

In a model of hypertension associated with high

salt intake and a continuous infusion of aldosterone,

spironolactone (20 mg/kg) reduced interstitial and

perivascular fibrosis [5]. At the same dose, spirono-

lactone reduced reactive fibrosis in the infarcted myo-

cardium [15]. However, these effects related to al-

dosterone receptor blockers were not confirmed in

other studies. For example, eplerenone did not reduce

left ventricular hypertrophy and myocardial fibrosis

in SHRs beyond the observed improvement in coro-

nary perfusion [24]. Collagen assessment is another

limitation to our data analysis. Collagen proliferation

can be observed in SHRs, mainly in adult SHRs, and

could be an important determinant of chamber stiff-

ness. Furthermore, mineralocorticoid receptor antago-

nists can interfere with fibrotic proliferation. How-

ever, it has been shown that the low dose used in our

work was unable to reduce fibrosis in SHRs [11].

Moreover, the association of hypertrophy with cham-

ber stiffness shown in our study reinforces the view

that hypertrophic regression may provide an impor-

tant opportunity to treat left ventricular stiffness.

The long-term use of spironolactone is often lim-

ited in patients due to the undesired adverse effects,

such as breast tenderness and gynecomastia, which af-

fects about 10% of treated men [8]. Eplerenone has

been used to treat several conditions, including hyper-

tension and heart failure, and has shown similar effi-

cacy as spironolactone without the same adverse ef-

fects and toxicities [14, 19]. Therefore, experimental

and clinical studies suggest that an aldosterone an-

tagonist may represent a useful strategy to prevent

matrix remodeling in chronic diseases such as hyper-

tension, preventing heart failure.

In summary, our data show that low-dose spirono-

lactone given to SHRs for a long-term period and ini-

tiated at an early stage of hypertension development,

when blood pressure is beginning to increase, results

in decreased left ventricular hypertrophy and higher
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Fig. 3. Correlation between left ventricular hypertrophy (evaluated by
LV/BW) and the chamber stiffness index



left ventricular compliance, independently of altera-

tions in blood pressure levels. These results support

the beneficial effects of aldosterone antagonists and

support their use as standard therapy.
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