

Pharma cological Reports 2011, 63, 724–732 ISSN 1734-1140 Copyright © 2011 by Institute of Pharmacology Polish Academy of Sciences

No protective effect of curcumin on hydrogen peroxide-induced cytotoxicity in HepG2 cells

Xiuping Chen^{1,2}, Zhangfeng Zhong^{1,2}, Zengtao Xu^{1,2}, Lidian Chen³, Yitao Wang^{1,2}

¹State Key Laboratory of Quality Research in Chinese Medicine, Macau 999078, China

²Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China

³Department of Pharmacy, Fujian University of Traditional Chhinese Medicine, Fuzhou, 350004, China

Correspondence: Yitao Wang, e-mail: ytwang@umac.mo; Xiuping Chen, e-mail: xpchen@umac.mo

Abstract:

Scavenging of intracellular reactive oxygen species (ROS) is one of the potential mechanisms contributing to the protective effects of many antioxidants. Curcumin, a natural product, is an effective ROS scavenger. However, the role of its ROS scavenging ability in its cytoprotective action remains to be clarified. Herein, the protective effects of curcumin on hydrogen peroxide (H₂O₂)- and *tert*butyl hydroperoxide-induced ROS formation and HepG2 cell injury were determined. HepG2 cells were pretreated with curcumin for 30 min and then treated with H₂O₂ (500 μ M) or *tert*-butyl hydroperoxide (200 μ M) for 24 h. Curcumin pretreatment dramatically decreased H₂O₂- and *tert*-butyl hydroperoxide-induced ROS production, but failed to suppress cytotoxicity of those compounds. H₂O₂ induced decreases in mitochondrial membrane potential (Δ Ψm) and increases in DNA fragmentation could not be reversed by curcumin. Furthermore, curcumin enhanced expression of H₂O₂-induced pro-apoptotic protein Bax expression and inhibited expression of anti-apoptotic proteins Bcl-2 and Bcl-xL. In addition, curcumin significantly decreased p38MAPK and phospho-CDC-2 protein expression and increased phospho-p38MAPK, p42/44MAPK, and phospho-p42/44MAPK protein expression. These results suggest that short pretreatment and subsequent longer co-treatment of low concentrations of curcumin showed no obvious protective effect on H₂O₂-induced HepG₂ cell injury.

Key words:

curcumin, hydrogen peroxide, reactive oxygen species, cytotoxicity

Introduction

Curcumin, also termed diferuloylmethane, is a natural yellow-orange-colored compound extracted from the rhizome of *Curcuma longa*. As the principle active compound of *Curcuma longa*, it has been shown to interact with a wide variety of proteins, modifying their expression and regulating their functions. However, some inconsistent results have also been appeared about curcumin's beneficial effect [13, 23]. Recently, the effect of curcumin on intracellular reactive oxy-

gen species (ROS) formation and its potential roles have been widely investigated. Curcumin is an effective antioxidant in different *in vitro* assays including reducing power; DPPH, ABTS⁺⁺, O_2^- and DMPD⁺⁺ radical scavenging; hydrogen peroxide (H₂O₂) scavenging; and metal chelating activities [1]. It also inhibits UV irradiation- and methylglyoxal-induced oxidative stress and apoptosis in A431 cells, embryonic stem cells, and blastocysts [7, 18]; protects mitochondria from oxidative damage; and attenuates apoptosis in cortical neurons [34]. In HepG2 cells, curcumin attenuated methylglyoxal- and acrylamideinduced cytotoxicity, genotoxicity, and apoptosis, which was mediated by inhibition of ROS formation [6, 8]. Furthermore, the inhibition of cellular ROS generation by curcumin was proposed to provide novel therapeutic implications [2].

However, the ROS scavenging-mediated beneficial effects of curcumin were recently challenged. Several observations demonstrated that the compound increased ROS generation, which mediated its proapoptotic actions in human colon cancer Colo 205 cells [28], AK-5 tumor cells [4], and L929 cells [29]. Earlier studies reported that curcumin protects against H_2O_2 -induced cellular injury in renal epithelial cells (LLC-PK1) [11], retina-derived cell lines (661W and ARPE-19) [22], while in NG108-15 cells, curcumin showed dual action on H_2O_2 -induced oxidative damage [21]. The present study was designed to determine the effect of curcumin on intracellular ROS formation and cytotoxicity in HepG2 cells and to test if there is a potential link between these two events.

Materials and Methods

Chemicals

Curcumin was isolated and identified by Prof. Qingwen Zhang (University of Macau). H₂O₂ was purchased from Merck (USA). The 3-[4,5-dimethyl-2thiazolyl]-2,5-diphenyltetrazolium bromide (MTT) and *tert*-butyl-hydroperoxide (TBHP) were obtained from Sigma Aldrich (USA). DMEM, FBS, CM-H₂DCF-DA, and JC-1 were obtained from Invitrogen (USA). All anti-rabbit primary antibodies and the secondary HRP-anti-rabbit antibody were purchased from Cell Signaling (USA). RIPA lysis buffer was obtained from Santa Cruz (USA).

Cell culture

HepG2 cells were purchased from ATCC (USA) and were grown in DMEM supplemented with 10% FBS at 37°C in 95% air and 5% CO₂. Cells were grown in transparent or black 96-well Costar plates for the MTT assay, ROS determination, Hoechst 33342 staining, and JC-1 staining.

Cell viability assays

HepG2 cells were plated at a density of 1×10^4 cells/well in 96-well plates to confluence and then "starved" for 12 h. After pretreatment with different concentrations of curcumin (1, 2, or 5 μ M) for 30 min, the cells were co-incubated with H₂O₂ (500 μ M) or TBHP (200 μ M) for another 24 h. The cell viability was determined by MTT assay [9].

CM-H₂DCF-DA assays

The CM-H₂DCF-DA assays were performed according to previous reports [12, 17] and the product manual with minor revision. Cells were pretreated with curcumin as described above, followed by coincubation with CM-H₂DCF-DA (2 μ M) for another 15 min. After treatment with H₂O₂ (500 μ M) or TBHP (200 μ M) for 30 min, the cells were washed with icecold PBS for three times. The fluorescence was monitored with a fluorescent microscopy and quantified by microplate reader with the excitation and emission wave lengths at 485 nm and 525 nm, respectively.

JC-1 assays

The mitochondrial membrane potential ($\Delta\Psi$ m) was monitored using fluorescent probe JC-1 staining [3]. Briefly, cells were pretreated with curcumin as described above, followed by H₂O₂ (500 µM) treatment for 30 min. Then, the cells were stained with JC-1 (5 µg/ml) for another 10 min. The fluorescence of JC-1 was observed with fluorescent microscopy, and the JC-1 monomer fluorescence was quantified by microplate reader with the excitation and emission wave lengths at 485 nm and 525 nm, respectively.

Hoechst 33342 staining

Hoechst 33342 staining was performed as previously reported [19], with minor revision. In brief, HepG2 cells were treated with different concentrations of curcumin (1, 2, or 5 μ M) with or without H₂O₂ for 24 h. Then, the culture medium was gently removed, and the cells were stained with Hoechst 33342 (final concentration 1 μ g/ml) for 10 min. The fluorescence was observed with a fluorescence microscope, and images were captured with an electronic camera.

Western blot analyses

Cells were treated as described above, and western blot analyses were conducted as previously described [26, 28]. The total proteins were extracted with RIPA lysis buffer containing 1% phenylmethanesulfonyl fluoride (PMSF) and 1% protease/phosphatase inhibitor cocktail, and their concentrations were determined with a BCA protein assay kit. Bcl-2, phospho-Bcl-2 (p-Bcl-2), Bax, Bad, PARP, cleaved PARP, Bim, Bcl-xL, phospho-CDC-2 (p-CDC-2), phospho-Chk2 (p-Chk2), p38MAPK, phospho-p38MAPK (p-p38MAPK), p42/44MAPK, and phospho-p42/44 MAPK (p-p42/44MAPK) protein expressions were detected by western blot with rabbit antihuman primary antibodies (1:1000) and HRP-conjugated goat anti-rabbit secondary antibodies (1:4000). Signals were visualized by enhanced chemiluminescence (ECL, Santa-Cruz) and scanned and semi-quantitatively analyzed with Quantity One (Bio-Rad, USA).

Data analysis

All data represent the mean of three separately performed experiments. The data are presented as the mean \pm SD. The LSD was used for *post-hoc* test, and the significance of intergroup differences were evaluated by one-way analyses of variance (one-way-ANOVA) using the SPSS11.5 software. Statistical differences were considered significant at p < 0.05.

Results

No protective effects of curcumin on H_2O_2 - and TBHP-induced cytotoxicity.

Compared with the control (Fig. 1A, D) cells, the treatment of HepG2 cells with curcumin for 24 h showed no significant cytotoxicity as determined by MTT assay (Fig. 1A), and no visible morphological changes was observed (Fig. 1E). H_2O_2 and TBHP treatment for 24 h dramatically decreased cell viability (Fig. 1B, C, F, G). Different concentrations of curcumin pretreatment showed no inhibitory effect on H_2O_2 - or TBHP-induced cell injury (Fig. 1B, C, H, I). Furthermore, 5 μ M curcumin enhanced H_2O_2 -induced cytotoxicity (Fig. 1B).

Curcumin suppressed H₂O₂- and TBHPinduced ROS formation

As shown in Figure 2, there is only sporadic green fluorescence in the control group (Fig. 2A), suggesting low production of intracellular ROS in intact cells. Induction with H_2O_2 or TBHP dramatically increased ROS formation (Fig. 2B, C), which could be significantly suppressed by curcumin in a dosedependent manner (D-F for H_2O_2 and G-I for TBHP, respectively). Vitamin C pretreatment could also sig-

Fig. 1. Effects of curcumin on $H_2O_2^-$ and TBHP-induced HepG2 injury. Treatment of HepG2 cells with curcumin (1, 2, or 5 μ M) for 24 h showed no significant cell injury, as determined by MTT assay and microscopy observation (**A** and **D**). Treatment of HepG2 cells with H_2O_2 (500 μ M) or TBHP (200 μ M) for 24 h dramatically decreased cell viability (**B**, **C**, **F**, **G**), while different concentrations of curcumin (1, 2, or 5 μ M) pretreatment could not inhibit $H_2O_2^-$ (500 μ M) and TBHP- (200 μ M) induced cell injury (**B**, **C**, **H**, **I**). Cur, Curcumin; **D**, Control; **E**, Curcumin (5 μ M); **F**, H_2O_2 (500 μ M); **G**, TBHP (200 μ M); **H**, H_2O_2 + curcumin (5 μ M); **I**, TBHP + curcumin (5 μ M). * p < 0.05, ** p < 0.01 compared with the control group and H_2O_2 group, respectively

nificantly decrease intracellular ROS formation (Fig. 2J, K). Fluorescence quantitative analysis provided similar results, and a concentration-dependent re-

sponse was also observed (Fig. 2Q). It is interesting to note that curcumin showed higher potency in ROS scavenging activity than vitamin C (Fig. 2Q).

Fig. 2. Effects of curcumin on H_2O_2 - and TBHP-induced intracellular ROS production and $\Delta\Psi$ m in HepG2 cells. (1) Intracellular ROS formation was monitored by CM- H_2 DCF-DA staining. Treatment of HepG2 cells with H_2O_2 (500 µM) or TBHP (200 µM) dramatically increased intracellular ROS formation (**B**, **C**), while curcumin (1, 2, or 5 µM) pretreatment strongly suppressed H_2O_2 - or TBHP-induced ROS production in a dose dependent manner (**D**, **E**, **F**, **G**, **H**, **I**). Five micromolar of vitamin C inhibited H_2O_2 - or TBHP-induced ROS production (**J**, **K**). Quantitative analysis of ROS formation provided similar results (**Q**). **A**, Control; **B**, H_2O_2 (500 µM); **C**, TBHP (200 µM); **D**, H_2O_2 + curcumin (1 µM); **E**, H_2O_2 + curcumin (2 µM); **F**, H_2O_2 + curcumin (5 µM); **G**, TBHP + curcumin (1 µM); **H**, TBHP + curcumin (2 µM); **I**, TBHP + curcumin (5 µM); **G**, H_2O_2 + vitamin C (5 µM); **K**, TBHP + vitamin C (5 µM); **Q**, Quantitative analysis of DCF fluorescence. Cur, Curcumin; VitC, vitamin C; * p < 0.05 compared with the H_2O_2 group and vitamin C group, respectively. (2). A Ψ m was monitored by JC-1 staining. **L**, Control; **M**, H_2O_2 (500 µM); **N**, H_2O_2 + curcumin (1 µM); **O**, H_2O_2 + curcumin (2 µM); **P**, H_2O_2 + curcumin (2 µM); **P**, H_2O_2 + curcumin (2 µM); **P**, H_2O_2 = curcumin (2 µM); **F**, H_2O_2 group and vitamin C group, respectively. (2). A Ψ m was monitored by JC-1 staining. **L**, Control; **M**, H_2O_2 (500 µM); **N**, H_2O_2 + curcumin (1 µM); **O**, H_2O_2 + curcumin (2 µM); **P**, H_2O_2 + curcumin (5 µM); **R**, Quantitative analysis of JC-1 fluorescence. * p < 0.05 compared with other groups

No effect of curcumin on ${\rm H_2O_2}\mbox{-induced } \Delta\Psi{\rm m}$ dissipation

cells was high. After H_2O_2 incubation, only sporadic red fluorescence was observed, revealing a dramatic decrease in $\Delta\Psi$ m (Fig. 2M). However, no significant inhibitory effects were observed after curcumin pretreatment (Fig. 2N–P). Quantitative analysis of the green fluorescence provided similar results (Fig. 2R).

As shown in Figure 2L, there was intense red fluorescence and sporadic green fluorescence in the control group, suggesting that the normal level of $\Delta \Psi m$ in intact

Fig. 3. Western blot analysis of *p*-CDC-2 (**A**), *p*-Chk2 (**B**), p38MAPK (**C**), *p*-p38MAPK (**D**), p42/44MAPK (**E**), *p*-p42/44MAPK (**F**) proteins expression in HepG2 cells. HepG2 cells pretreated with or without curcumin for 30 min and then treated with H_2O_2 (500 µM) for 24 h. Proteins were extracted. SDS-PAGE was performed, and the proteins were transferred to a PVDF membrane and detected using corresponding antibodies and an ECL kit. β -Actin blotting was used as control. Cur, Curcumin. * p < 0.05 compared with control group, and ** p < 0.05 compared with the H_2O_2 alone group

Fig. 4. Western blot analysis of apoptosis-related protein expression. HepG2 cells were pretreated with or without curcumin for 30 min and then treated with H_2O_2 (500 µM) for 24 h. Proteins were extracted. SDS-PAGE was performed, and the proteins were subsequently transferred to a PVDF membrane and detected using corresponding antibodies and an ECL kit. β -Actin blotting was used as a control. Cur, Curcumin. * p < 0.05 compared with control group, and ** p < 0.05 compared with the H_2O_2 alone group

Effects of curcumin on H₂O₂-induced protein expression

 H_2O_2 treatment increased *p*-CDC-2 expression without affecting *p*-Chk2 (Fig. 3A, B). Curcumin pretreatment significantly decreased H_2O_2 -induced *p*-CDC-2 expression at 5 μ M (Fig. 3A). H_2O_2 treatment showed no obvious effect on p38MAPK or *p*-p38MAPK expression, while curcumin pretreatment significantly decreased p38MAPK expression and increased *p*p38MAPK expression (Fig. 3C, D). The decreases in H_2O_2 -induced p42/44MAPK expression were dramatically reversed by curcumin in a concentrationdependent manner (Fig. 3E). Curcumin pretreatment increased *p*-p42/44MAPK expression (Fig. 3F).

In regard to anti-apoptotic protein expression, H₂O₂ treatment decreased Bcl-2 expression but increased *p*-Bcl-2 expression without affecting Bcl-xL expression, while curcumin pretreatment reversed H₂O₂-induced *p*-Bcl-2 expression and decreased BclxL expression (Fig. 4A–C). Furthermore, H₂O₂ treatment increased Bax expression but decreased Bim expression without affecting Bad expression. Curcumin pretreatment reversed H₂O₂-induced Bim expression but enhanced H₂O₂-induced Bax expression without

Fig. 5. Hoechst 33342 staining of DNA fragmentation. HepG2 cells were pretreated with curcumin (1, 2, or 5 μ M) for 24 h with or without H₂O₂ (500 μ M) and then stained with Hoechst 33342. **A**, Control; **B**, Curcumin (1 μ M); **C**, Curcumin (2 μ M); **D**, Curcumin (5 μ M); **E**, H₂O₂ (500 μ M); **F**, H₂O₂ + curcumin (5 μ M)

affecting Bad expression (Fig. 4D–F). In addition, H_2O_2 treatment showed no effect on either PARP or cleaved expression, while curcumin pretreatment increased cleaved PARP expression (Fig. 4G, H).

No effect of curcumin on H_2O_2 -induced DNA fragmentation

Hoechst staining showed that, in the control group, DNA fragmentation is rare (Fig. 5A). No significant increase in DNA fragmentation was observed in groups treated with different concentrations of curcumin (Fig. 5B–D). H_2O_2 dramatically induced DNA fragmentation (Fig. 5E), which could not be inhibited by curcumin (5 μ M) pretreatment (Fig. 5F).

Discussion

Curcumin induced apoptotic cell death in human neuroblastoma cells [14], HCT-116 colon cancer cells [31], and esophageal cancer cells [25]. In the present study, we found that there is no obvious cytotoxic effect of 5 µM curcumin on HepG2 cells after 24 h incubation. However, 10 µM curcumin significantly decreased cell viability (Fig. 1A). To minimize the cytotoxic effect of curcumin itself, doses of 1, 2, and 5 μ M curcumin were chosen. In NG108-15 cells coincubated with H₂O₂, curcumin effectively protected cells from oxidative damage, while curcumin pretreatment showed no effect [21]. Curcumin also showed a protective effect on H₂O₂-induced LLC-PK1 cell [11], 661W cell, and ARPE-19 cell [22] injury. However, under our experimental conditions, no protective effect of curcumin on either H2O2- or TBHP-induced HepG2 cell injury was observed, as determined by both MTT assay and microscopy. Furthermore, a higher curcumin concentration (5 μ M) even enhanced H₂O₂-induced cytotoxicity. This inconsistency might be due to the concentration and the incubation time rather than the reactivity of different cell lines. All previous studies [11, 21, 22], without exception, analyzed the protective effect of curcumin after only 3 h of H_2O_2 incubation, while we monitored the effect after 24 h. This 3 h co-incubation might be too short of a time period for curcumin to exert its multiple actions. Therefore, the ability of curcumin pretreatment to cause a significant concentration-dependent decrease in cell viability after H_2O_2 incubation [21] might be partly due to curcumin-mediated injury because the concentration (25–100 μ M) used [21] might cause significant cytotoxicity. Similarly to our results, curcumin was found to enhance paraquat-induced apoptosis in N27 mesencephalic cells [24]. In addition, in some previous studies, curcumin was pretreated with cells, but the subsequent co-incubation with H_2O_2 was absent [6, 22], a treatment condition that is quite different from our present study using short pretreatment and longer co-incubation times.

ROS scavenging ability was proposed to be one of curcumin's protective mechanisms in methylglyoxaland acrylamide-treated HepG2 cells [6, 8], methylglyoxal-treated embryonic stem cells and blastocysts [18], and 1-methyl-4-phenylpyridinium-treated PC12 cells [9], whereas other studies showed that curcumin is a potent ROS inducer [15] and that the ROS generated by curcumin treatment mediated apoptosis in AK-5 cells [4], Colo 205 cells [28], and L929 cells [29]. This disagreement might result, at least in part, from the fact that curcumin-mediated regulation of redox homeostasis is time- and concentration-dependent [20]. Our results clearly demonstrated that curcumin is a potent ROS scavenger at very low concentrations. It significantly scavenges both H₂O₂- and TBHP-induced ROS production, with higher potency than vitamin C. From these results, combined with the MTT data, we speculate that the ROS scavenging activities of curcumin exerts no, or merely minimal, direct protective effect on H₂O₂- or TBHP-induced injury.

In our study we also observed morphological apoptotic changes of HepG2 cells after H₂O₂ treatment by Hoechst 33342 staining (Fig. 5), which showed no protective effect of curcumin on H₂O₂-induced DNA fragmentation. Additionally, curcumin pretreatment failed to restore the H_2O_2 -induced reduction of $\Delta\Psi m$, suggesting its inability to inhibit H₂O₂-induced apoptosis. The reduction or loss of $\Delta \Psi m$ is an early indicator of apoptosis and a key indicator of cellular viability. The western blot results were consistent with previous studies showing that curcumin-induced apoptosis was mediated by the down-regulation of Bcl-xL [32] and Bcl-2 [30] and by the up-regulation of Bax [27] and Bim [16]. PARP activation and subsequent cleavage have active and complex roles in apoptosis and serve as a marker of cells undergoing apoptosis. Curcumin pretreatment enhanced cleavage of PARP, further suggested the occurrence of apoptotic cell death. Therefore, the present study suggested that curcumin might enhance H₂O₂-induced HepG2 cell injury by promoting apoptosis. Bcl-2 phosphorylation is tightly associated with mitotic arrest and might be a marker for mitotic events [33]. To the best of our knowledge, this is the first study reporting the inhibition of Bcl-2 phosphorylation by curcumin. Its inhibition of H₂O₂induced CDC-2 phosphorylation, without affecting Chk2 phosphorylation, implies a G2/M cell cycle arrest mechanism for curcumin. Some kinases such as p38MAPK, p-p38MAPK, p42/44MAPK, and p-p42/ 44MAPK were found to be involved in apoptosis [5, 10]. In the present study, we found that curcumin increased p-p42/44MAPK expression and reversed H₂O₂-induced p42/44MAPK decreases, suggesting that the regulation of these kinases might also play an important role in this complicated regulatory network.

In conclusion, the present study suggested that short pretreatment and subsequent longer co-incubation with low concentrations of curcumin showed no obvious protective effect on H_2O_2 -induced HepG2 cell injury.

Acknowledgments:

This study was supported by the Macao Science and Technology Development Fund (029/2007/A2) and University of Macau Research Fund (UL016/09-Y3/CMS/WYT01/ICMS). The authors thank Professor Qingwen Zhang (University of Macau) for providing curcumin.

References

- 1. Ak T, Gulcin I: Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact, 2008, 174, 27–37.
- Balasubramanyam M, Koteswari AA, Kumar RS, Monickaraj SF, Maheswari JU, Mohan V: Curcumin-induced inhibition of cellular reactive oxygen species generation:Novel therapeutic implications. J Biosci, 2003, 28, 715–721.
- Bedner E, Li X, Gorczyca W, Melamed MR, Darzynkiewicz Z: Analysis of apoptosis by laser scanning cytometry. Cytometry, 1999, 35, 181–195.
- Bhaumik S, Anjum R, Rangaraj N, Pardhasaradhi BV, Khar A: Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates. FEBS Lett, 1999, 456, 311–314.
- 5. Cagnol S, Chambard JC: ERK and cell death: mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J, 2010, 277, 2–21.
- Cao J, Liu Y, Jia L, Jiang LP, Geng CY, Yao XF, Kong Y et al.: Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ros scavenging. J Agric Food Chem, 2008, 56, 12059–12063.
- 7. Chan WH, Wu CC, Yu JS: Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic bio-

chemical changes in human epidermoid carcinoma A431 cells. J Cell Biochem, 2003, 90, 327–338.

- Chan WH, Wu HJ, Hsuuw YD: Curcumin inhibits ros formation and apoptosis in methylglyoxal-treated human hepatoma g2 cells. Ann NY Acad Sci, 2005, 1042, 372–378.
- Chen J, Tang XQ, Zhi JL, Cui Y, Yu HM, Tang EH, Sun SN et al.: Curcumin protects PC12 cells against 1-methyl- 4phenylpyridinium ion-induced apoptosis by bcl-2 mitochondria- ROS-iNOS pathway. Apoptosis, 2006, 11, 943–953.
- Chen X, Lan X, Mo S, Qin J, Li W, Liu P, Han Y, Pi R: P38 and ERK, but not JNK, are involved in copperinduced apoptosis in cultured cerebellar granule neurons. Biochem Biophys Res Commun, 2009, 379, 944–948.
- Cohly HH, Taylor A, Angel MF, Salahudeen AK: Effect of turmeric, turmerin and curcumin on H₂O₂-induced renal epithelial (LLC-PK1) cell injury. Free Radic Biol Med, 1998, 24, 49–54.
- Dedkova EN, Blatter LA: Characteristics and function of cardiac mitochondrial nitric oxide synthase. J Physiol, 2009, 587, 851–872.
- Folwarczna J, Zych M, Trzeciak HI: Effects of curcumin on the skeletal system in rats. Pharmacol Rep, 2010, 62, 900–909.
- Freudlsperger C, Greten J, Schumacher U: Curcumin induces apoptosis in human neuroblastoma cells via inhibition of NFκB. Anticancer Res, 2008, 28, 209–214.
- Fujisawa S, Atsumi T, Ishihara M, Kadoma Y: Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res, 2004, 24, 563–569.
- Ghosh AK, Kay NE, Secreto CR, Shanafelt TD: Curcumin inhibits prosurvival pathways in chronic lymphocytic leukemia B cells and may overcome their stromal protection in combination with EGCG. Clin Cancer Res, 2009, 15, 1250–1258.
- Granados MP, Salido GM, Pariente JA, González A: Generation of ROS in response to CCK-8 stimulation in mouse pancreatic acinar cells. Mitochondrion, 2004, 3, 285–296.
- Hsuuw YD, Chang CK, Chan WH, Yu JS: Curcumin prevents methylglyoxal-induced oxidative stress and apoptosis in mouse embryonic stem cells and blastocysts. J Cell Physiol, 2005, 205, 379–386.
- Kelly KJ, Sandoval RM, Dunn KW, Molitoris BA, Dagher PC: A novel method to determine specificity and sensitivity of the TUNEL reaction in the quantitation of apoptosis. Am J Physiol Cell Physiol, 2003, 284, C1309–1318.
- Kunwar A, Sandur SK, Krishna M, Priyadarsini KI: Curcumin mediates time and concentration dependent regulation of redox homeostasis leading to cytotoxicity in macrophage cells. Eur J Pharmacol, 2009, 611, 8–16.
- Mahakunakorn P, Tohda M, Murakami Y, Matsumoto K, Watanabe H, Vajaragupta O: Cytoprotective and cytotoxic effects of curcumin: Dual action on H₂O₂-induced oxidative cell damage in NG108-15 cells. Biol Pharm Bull, 2003, 26, 725–728.
- 22. Mandal MN, Patlolla JM, Zheng L, Agbaga MP, Tran JT, Wicker L, Kasus-Jacobi A et al.: Curcumin protects retinal cells from light-and oxidant stress-induced cell death. Free Radic Biol Med, 2009, 46, 672–679.

- Oh S, Kyung TW, Choi HS: Curcumin inhibits osteoclastogenesis by decreasing receptor activator of nuclear factor-kappaB ligand (RANKL) in bone marrow stromal cells. Mol Cells, 2008, 26, 486–489.
- 24. Ortiz-Ortiz MA, Moran JM, Bravosanpedro JM, Gonzalez-Polo RA, Niso-Santano M, Anantharam V, Kanthasamy AG et al.: Curcumin enhances paraquatinduced apoptosis of N27 mesencephalic cells via the generation of reactive oxygen species. Neurotoxicology, 2009, 30, 1008–1018.
- O'Sullivan-Coyne G, O'Sullivan GC, O'Donovan TR, Piwocka K, McKenna SL: Curcumin induces apoptosisindependent death in oesophageal cancer cells. Br J Cancer, 2009, 101, 1585–1595.
- 26. Park J, Ayyappan V, Bae EK, Lee C, Kim BS, Kim BK, Lee YY et al: Curcumin in combination with bortezomib synergistically induced apoptosis in human multiple myeloma U266 cells. Mol Oncol, 2008, 2, 317–326.
- Scharstuhl A, Mutsaers HA, Pennings SW, Russel FG, Wagener FA: Involvement of VDAC, Bax and ceramides in the efflux of AIF from mitochondria during curcumin-induced apoptosis. PLoS One, 2009, 4, e6688.
- 28. Su CC, Lin JG, Li TM, Chung JG, Yang JS, Ip SW, Lin WC, Chen GW: Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca²⁺ and the activation of caspase-3. Anticancer Res, 2006, 26, 4379–4389.
- 29. Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S: Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and -independent apoptosis in L929 cells. Free Radic Biol Med, 2008, 45, 1403–1412.
- 30. Watson JL, Greenshields A, Hill R, Hilchie A, Lee PW, Giacomantonio CA, Hoskin DW: Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling. Mol Carcinog, 2009, 49, 13–24.
- Watson JL, Hill R, Lee PW, Giacomantonio CA, Hoskin DW: Curcumin induces apoptosis in HCT-116 human colon cancer cells in a p21-independent manner. Exp Mol Pathol, 2008, 84, 230–233.
- 32. Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH, Min DS et al.: Molecular mechanisms of curcumininduced cytotoxicity: Induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis, 2003, 24, 1199–1208.
- Yamamoto K, Ichijo H, Korsmeyer SJ: Bcl-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G₂/M. Mol Cell Biol, 1999, 19, 8469–8478.
- 34. Zhu YG, Chen XC, Chen ZZ, Zeng YQ, Shi GB, Su YH, Peng X: Curcumin protects mitochondria from oxidative damage and attenuates apoptosis in cortical neurons. Acta Pharmacol Sin, 2004, 25, 1606–1612.

Received: February 3, 2010; in the revised form: November 12, 2010; accepted: November 29, 2010.