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Abstract:

This study was undertaken to evaluate the effect of nitric oxide (NO) synthase inhibitors on benzodiazepine withdrawal syndrome in mice
and rats. Diazepam withdrawal in mice was read out as intensification of the seizures induced by a subthreshold dose of pentetrazole. In
rats, the withdrawal syndrome resulting from chronic administration of diazepam, chlordiazepoxide, clonazepam and temazepam was
characterized by audiogenic seizures, hypermotility and weight loss. Administration of the non-selective NO synthase inhibitors N�-nitro-
L-arginine (L-NOARG) and N�-nitro-L-arginine methyl ester hydrochloride (L-NAME) significantly attenuated the withdrawal syn-
drome (i.e., pentetrazole-induced seizures) in diazepam-dependent mice. L-NOARG significantly suppressed hypermotility in
clonazepam-dependent rats and inhibited the decrease in body weight observed after 12 h of withdrawal in chlordiazepoxide- and
clonazepam-dependent rats. Moreover, a clear propensity of L-NOARG to protect benzodiazepine-dependent rats against audiogenic sei-
zures was observed. These findings suggest that the cGMP/NO system may participate in causing the signs of benzodiazepine withdrawal.
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Introduction

Benzodiazepines are the most commonly prescribed
psychoactive drugs and exert a number of pharmacol-
ogical effects, such as anxiolysis, sedation, hypnosis,
muscle relaxation and anticonvulsant activity. It is
generally known that the main factors involved in the
effects of benzodiazepines are �-aminobutyric acid
(GABA) and the GABAergic system [3, 28, 29, 60].
Unfortunately, chronic benzodiazepine treatment may
lead to the development of tolerance and dependence
[60]. Although multiple chemical mediators are now
hypothesized to be involved in the addictive effect of
benzodiazepines, the cellular and neural mechanisms
involved in the development and expression of benzo-
diazepine dependence are not fully understood.

Nitric oxide (NO) is a diffusible second messenger
formed from the amino acid L-arginine by the enzyme NO
synthase upon activation of NMDA receptors [11]. It has
been well established that one of the pathways for NO sig-
naling begins with the activation of guanyl cyclase, result-
ing in an increase in the level of the intracellular second
messenger cGMP [11, 31]. NO appears to be a novel neu-
ronal messenger involved in a number of physiological and
pathophysiological processes, e.g., nociception [42], neuro-
genesis [6], learning and memory [62], anxiety [37] and
seizure activity [9]. Recent studies have established that the
NO pathway contributes to neuronal adaptation in response
to repeated exposure to a variety of addictive drugs [55]
and also that the inhibition of NO production attenuates the
signs of withdrawal from opioids [10, 57], ethanol [54],
psychostimulants [38] and nicotine [39].
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Data from the literature indicate that there is a rela-
tionship between the L-arginine:NO:cGMP pathway
and GABA-mediated synaptic transmission in the
central nervous system. A number of in vivo and in vi-

tro experiments suggest that NO plays a modulatory
role in either the release or the uptake of several neu-
rotransmitters in the brain, including GABA [26, 41].
Valtschanoff’s group [56] has provided evidence for
the co-localization of NO synthase with GABA in
neurons of the rat cortex, hippocampus and striatum.
It has also been postulated that NO can modulate the
activity of GABA� receptors [63] or act directly on
GABA� receptors [23]. In our previous experiments
we showed that NO may be involved in some of the
acute effects of benzodiazepines, such as their antino-
ciceptive [48], anticonvulsant [47] and hypnotic ac-
tivities [46], and also in the development of tolerance
after chronic treatment with diazepam [49].

In the light of these findings, there is a need to deter-
mine the role of NO in the occurrence of benzodi-
azepine withdrawal signs in mice and rats. Diazepam
(T��� = 43 ± 13 h) and chlordiazepoxide (T��� = 10 ± 3 h)
were chosen as representatives of the major clinically
available long-acting benzodiazepines because of their
long-acting metabolite desmethyldiazepam. In con-
trast, clonazepam (T��� = 23 ± 3 h) and temazepam (T���

= 11 ± 6 h) were chosen as representatives of interme-
diate- and short-acting benzodiazepines, respectively
[7]. The influence of L-NAME and L-NOARG on hy-
persusceptibility to pentetrazole-induced seizures was
evaluated in diazepam-withdrawn mice. The effect of
L-NOARG on the withdrawal signs resulting from
long-lasting exposure to diazepam, chlordiazepoxide,
clonazepam and temazepam (audiogenic seizures,
hypermotility and body weight loss) was studied in
rats. Both L-NAME and L-NOARG are nonselective
NO synthase inhibitors. Apart from their central activ-
ity, they also affect the cardiovascular system and in-
crease arterial blood pressure [40], but they are widely
used in preliminary behavioral studies.

Materials and Methods

Animals

The experiments were carried out on male albino Swiss
mice (23–30 g) and male Wistar rats (170–220 g). The

animals were housed in groups of 10/cage at room tem-
perature (22 ± 1°C) and in a natural day-night cycle.
Standard food and water were available ad libitum over
the whole period of the experiments. All experiments
were performed between 9:00 a.m. and 3:00 p.m.

All behavioral experiments were carried out accord-
ing to both the National Institutes of Health Guidelines
for the Care and Use of Laboratory Animals and the
European Community Council Directive for the Care
and Use of Laboratory Animals of 24 November 1986
(86/609/EEC) and were approved by the local ethics
committee.

Drugs

The following drugs were used: diazepam (Relanium,
Polfa, Poland), chlordiazepoxide, clonazepam, temaze-
pam (all from Polfa, Poland), N�-nitro-L-arginine
(L-NOARG, RBI, USA), N�-nitro-L-arginine methyl
ester hydrochloride (L-NAME, Sigma-Aldrich, USA),
flumazenil (RO-151788, Hoffman-La Roche, Switzer-
land) and pentetrazole (Sigma-Aldrich, USA). The ben-
zodiazepine pellets were prepared according to the
modified procedure described by Way et al. [59] for
morphine pellets.

L-NOARG, L-NAME and pentetrazole were dissolved
in saline. Diazepam was diluted in saline to the proper con-
centration. Flumazenil was dissolved in the minimal vol-
ume of dimethyl sulfoxide (DMSO, Sigma-Aldrich, USA)
and diluted in saline. All benzodiazepines and pentetrazole
were administered subcutaneously (sc), and all other drugs
were injected intraperitoneally (ip). The drugs were admin-
istered in a volume of 10 ml/kg for mice and 5 ml/kg for
rats. The control animals were injected with an appropriate
volume of the solvent.

Experimental procedure

Diazepam dependence was induced in mice by subcuta-
neous (sc) implantation of 1 pellet containing 75 mg/kg
of DZ, which was left implanted for 14 days. Addition-
ally, the animals were injected sc with diazepam at
a dose of 50 mg/kg/day for 11 days (from the 4�� to 15��

day of pellet implantation). On the 15�� day, the pellets
were removed, and an hour later, the last dose of diaze-
pam was administered. The experiments were con-
ducted 48 h after removal of the pellets.

Dependence on diazepam, chlordiazepoxide, clo-
nazepam and temazepam was obtained in rats by sc

implantation of 2 pellets containing 75 mg/kg of each
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benzodiazepine; the pellets were left in for 21 days
and removed on the 22�� day; studies were performed
about 10 h after pellet removal.

The control animals were implanted with placebo
pellets and received an equal volume of the solvent at
the proper time before the test.

The level of withdrawal after the discontinuation of
chronic administration of diazepam in mice was esti-
mated by the amount of intensification of the seizures
induced by the concomitant administration of a sub-
threshold dose (55 mg/kg) of pentetrazole and benzodi-
azepine receptor antagonist – flumazenil (10 mg/kg).
The NO synthase inhibitors were injected 10 min be-
fore pentetrazole and flumazenil. The animals were
placed singly in glass cylinders after pentetrazole ad-
ministration, and over the next 60 min, the number of
mice developing clonic seizures and tonic convulsions,
the number of episodes and the number of animals that
died was recorded. The absolute mean values of the
numbers of clonic episodes and tonic episodes and the
mortality rate in the control group (treated with pente-
trazole and flumazenil alone) were taken as 100%.

In rats, signs of benzodiazepine withdrawal after
the discontinuation of chronic treatment with benzo-
diazepines were induced by the injection of flu-
mazenil (10 mg/kg) 5 min before the test. To evaluate
locomotor activity, rats were placed singly in round
actometer cages (32 cm diameter, two light beams)
and observed for 30 min. Audiogenic seizures were
evoked by the sound of an electric bell (92 dB, lasting
up to 60 s). The weight of the rats was recorded every
day after the implantation of pellets and 6, 12 and 24 h
after removal of the pellets.

L-NAME (50, 100, 200 mg/kg) and L-NOARG
(7.5, 75 mg/kg) were injected 30 min before the ex-
periments.

Statistical analysis

The obtained data were evaluated statistically using
a �� test with Yates correction (for the number of mice
with pentetrazole-induced and audiogenic seizures)
and one-way ANOVA with Tukey-Kramer’s post-hoc

test (for the number of seizure episodes in pentetra-
zole-induced convulsions, locomotor activity, and
weight loss). The results are expressed as the means
± SEM of groups consisting of 10 animals. A prob-
ability (p) value of 0.05 or less was considered to be
statistically significant.

Results

The influence of L-NAME on diazepam

withdrawal syndrome (pentetrazole-induced

seizures) in mice

In diazepam-treated mice, a strong withdrawal syndrome,
manifested by intensification of the seizures evoked by
a subthreshold dose of pentetrazole (55 mg/kg), was
only observed after the previous administration of flu-
mazenil (10 mg/kg) (Fig. 1A). In total, this treatment
resulted in 21 clonic seizure episodes, 4 tonic seizure
episodes in mice and 3 deaths. These values were taken
as 100% (control group), and the results for all other
groups were compared to them. Administration of
L-NAME (at 50, 100 and 200 mg/kg) significantly de-
creased the number of clonic convulsions (p < 0.01, p <
0.01 and p < 0.001, respectively) and protected the
diazepam-dependent mice against tonic seizures (p <
0.05). It also resulted in a non-significant protection
against mortality. Pretreatment with L-NAME (200
mg/kg) combined with pentetrazole and flumazenil
treatment did not affect seizure activity in mice previ-
ously implanted with placebo pellets.

The influence of L-NOARG on diazepam

withdrawal syndrome (pentetrazole-induced

seizures) in mice

In diazepam-treated mice, co-administration of a sub-
threshold dose of pentetrazole (55 mg/kg) with flu-
mazenil (10 mg/kg) induced a withdrawal syndrome,
which manifested as 18 clonic seizure episodes, 4 tonic
seizure episodes and 4 deaths overall (Fig. 1B). These
values were taken as 100% (control group), and the
results for all other groups were compared to them.
L-NOARG (7.5 and 75 mg/kg) significantly and fully
protected the diazepam-dependent animals against
tonic convulsions (p < 0.05) and death (p < 0.05). Ad-
ministration of L-NOARG at the higher dose
(75 mg/kg) also reduced the number of clonic seizures
in mice chronically treated with diazepam (p < 0.01).
Pretreatment with L-NOARG (75 mg/kg) combined
with pentetrazole and flumazenil treatment did not af-
fect seizure activity in mice implanted with placebo
pellets.

682 �����������	��� 
����
�� ����� ��� �������



The influence of L-NOARG on the hypermotility as-

sociated with diazepam, chlordiazepoxide, clonaze-

pam and temazepam withdrawal in rats

Administration of flumazenil (10 mg/kg) in rats chroni-
cally treated with diazepam, chlordiazepoxide, clonaze-
pam and temazepam induced strong and significant (p <
0.05, p < 0.05, p < 0.001 and p < 0.001, respectively)

withdrawal signs, which manifested as an increase in lo-
comotor activity (Fig. 2). L-NOARG (15 mg/kg) signifi-
cantly reduced the locomotor activity in rats chronically
treated with diazepam (p < 0.05) and clonazepam (p <
0.05) but not those treated with chlordiazepoxide and te-
mazepam. Locomotor activity in benzodiazepine-
dependent rats was not altered by the administration of
the lower dose of L-NOARG (7.5 mg/kg).

�����������	��� 
����
�� ����� ��� ������� 683

Benzodiazepine withdrawal and nitric oxide
������ �����	
 	� ���

Fig. 1. The influence of A. L-NAME (50,
100 and 200 mg/kg) and B. L-NOARG
(7.5 and 75 mg/kg) on diazepam with-
drawal manifested by pentetrazole-
induced seizures in mice. The results
are expressed as the means ± SEM for
the number of seizure episodes and
the mortality rate (in %) in n = 10 mice.
The mean values of the number of
clonic and tonic episodes and the
mortality rate in mice treated with di-
azepam (Pl-DZ) + flumazenil (Flu) +
pentetrazole (PTZ) + saline (control
mice) were assumed to be 100%. * p <
0.05, ** p < 0.01, *** p < 0.001 vs. con-
trol (post-hoc Tukey-Kramer’s test)



Effect of L-NOARG on audiogenic seizures

associated with diazepam, chlordiazepoxide,

clonazepam and temazepam withdrawal in rats

Discontinuation of benzodiazepine administration fol-
lowed by an injection of flumazenil (10 mg/kg) and
application of a sound of an electric bell (92 dB, last-
ing up to 60 s) significantly evoked audiogenic sei-
zures in rats treated with chlordiazepoxide (p < 0.05)
and clonazepam (p < 0.01) (Fig. 3). There were no
significant differences in the frequency of audiogenic
seizures after administration of L-NOARG (7.5 and
15 mg/kg) in benzodiazepine-dependent rats.

Effect of L-NOARG on body weight loss associ-

ated with diazepam, chlordiazepoxide, clonaze-

pam and temazepam withdrawal in rats

There were no significant differences in body weight
gain between the chronically benzodiazepine-treated
rats and the placebo group during the development of
benzodiazepine dependence (Fig. 4). Discontinuation
of benzodiazepine administration alone (in the case of
chlordiazepoxide and clonazepam) or combined with

an injection of flumazenil (10 mg/kg) resulted in sig-
nificant body weight loss in diazepam-treated rats at
6 h (p < 0.001) and 12 h (p < 0.05), in temazepam-
treated rats at 6 h (p < 0.01) and in chlordiazepoxide-
and clonazepam-treated rats at 12 h after the removal
of the pellets. L-NOARG was administered at 7.5 and
15 mg/kg; however, only the higher dose resulted in
inhibition of weight loss in chlordiazepoxide- and
clonazepam-dependent rats at 12 h after removal of
the pellets.

Discussion

Long-term exposure to benzodiazepines has been
shown to produce tolerance and dependence in hu-
mans and several animal species [20, 60]. In humans,
discontinuation of the chronic administration of ben-
zodiazepines induces a withdrawal syndrome, which
involves various signs and symptoms including en-
hanced anxiety, hyperactivity, insomnia, reduced sei-
zure threshold and perceptual disturbances [60]. In
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Fig. 2. The influence of L-NOARG (7.5
and 15 mg/kg) on hypermotility during
flumazenil (Flu)-induced withdrawal
from the following benzodiazepines
(BZs): diazepam (DZ), chlordiazepox-
ide (CDP), clonazepam (CZ) and te-
mazepam (TZ). The results are ex-
pressed as the means ± SEM for n =
10 rats. The mean value for the loco-
motor activity in rats implanted with
placebo pellets was assumed to be
100%. * p < 0.05, *** p < 0.001 (post-
hoc Tukey-Kramer’s test)
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Fig. 3. The influence of L-NOARG (7.5
and 15 mg/kg) on audiogenic seizures
during flumazenil (Flu)-induced with-
drawal from the following benzodi-
azepines (BZs): diazepam (DZ), chlor-
diazepoxide (CDP), clonazepam (CZ)
and temazepam (TZ). The results are
expressed as the means ± SEM for n =
10 rats. The mean value for the audio-
genic seizures in rats implanted with
placebo pellets was assumed to be
100%. * p < 0.05, ** p < 0.01 (�� test
with Yates correction)

Fig. 4. The influence of L-NOARG (7.5
and 15 mg/kg) on weight loss during
flumazenil (Flu)-induced withdrawal
from diazepam (DZ), chlordiazepoxide
(CDP), clonazepam (CZ) and temaze-
pam (TZ). The results are expressed
as the means ± SEM of the body
weight difference (in g) between ben-
zodiazepine- and placebo-treated rats
(n = 10). * p < 0.05, ** p < 0.01, *** p <
0.001 (post-hoc Tukey-Kramer’s test)



animals, withdrawal-induced changes include sponta-
neous seizures, increased anxiety, weight loss, hyper-
motility, tremors and increased sensitivity to audio-
genic seizures [5, 27].

In the current study, the development of diazepam
dependence in mice was produced by a 14-day expo-
sure to sc implanted diazepam-containing pellets in
combination with sc injected diazepam. In rats, de-
pendence was induced by sc implantation of diaze-
pam-, chlordiazepoxide-, clonazepam- and temaze-
pam-containing pellets for 21 days. The sc implanta-
tion of pellets containing various benzodiazepines has
been effectively employed as an animal model for the
study of tolerance and physical dependence [27]. The
slow release of benzodiazepines from the pellets re-
sults in the maintenance of mostly stable plasma lev-
els of the parent benzodiazepines and any metabo-
lites. Thus, it is thought that this method of chronic
administration circumvents the rapid metabolism of
benzodiazepines and results in continuous occupation
of the benzodiazepine recognition site. The appear-
ance of the withdrawal syndrome is widely accepted
as confirming the development of physical depend-
ence, and the severity of the withdrawal syndrome in-
dicates the magnitude of the physical dependence [8].
Therefore, the development of physical dependence
can be ascertained by precipitating and measuring
withdrawal reactions.

In the present experiments, the measured sign of
diazepam withdrawal after the removal of the pellets
from mice was the intensification of the seizures
induced by concomitant application of flumazenil
(a benzodiazepine receptor antagonist) and the
subthreshold dose of pentetrazole. It is known that ad-
ministration of flumazenil in animals previously ex-
posed to repeated doses of benzodiazepines abruptly
blocks the agonist activity at the receptor and, de-
pending upon the experimental conditions, can elicit
an intense withdrawal reaction [24, 25, 60]. The signs
of withdrawal in rats were precipitated by administra-
tion of flumazenil and manifested as a significant in-
crease in locomotor activity (in rats treated with all of
the benzodiazepines used in the experiments), the ap-
pearance of audiogenic seizures (in diazepam- and
chlordiazepoxide-treated rats) and a reduction in body
weight gain at 6 h (for all benzodiazepine-treated
groups) and 12 h (in case of diazepam, chlordiazepox-
ide and temazepam) after removal of the pellets. The
apparent discrepancies in the expression of these dif-
ferent withdrawal signs in rats treated with various

benzodiazepines used in our study do not seem to be
associated with the half-lives of the various benzodi-
azepines but rather seem to be due to overall experi-
mental variability. The present results confirm find-
ings from the literature [60] showing that the half-
lives of benzodiazepines do not play an important role
in the severity of the signs of withdrawal.

Although the central benzodiazepine receptor rec-
ognition site on the GABA� receptor plays a key role
in the therapeutic effects of benzodiazepines [3, 60],
the mechanisms involved in benzodiazepine with-
drawal are not fully understood. Some authors have
reported alterations in GABA� receptor subunit ex-
pression [35, 36, 50, 58, 61], whereas the others
showed changes in GABA� receptor density [for ref.
see 2]. A number of studies demonstrate that adaptive
changes in the GABAergic system are difficult to in-
vestigate and may be only one of the mechanisms un-
derlying the signs of benzodiazepine withdrawal [20].
Stephens [44] suggests that chronic treatment with
benzodiazepines may induce excitatory signaling in
systems such as the glutamatergic system as part of
a compensatory effect. Thus, it is possible that an
overactive glutamatergic system, which may be asso-
ciated with alterations in NMDA receptor subunit ex-
pression or changes in binding to this receptor, may
be responsible for the appearance of the benzodi-
azepine withdrawal signs [17, 44, 51]. The mecha-
nisms underlying these phenomena are now recog-
nized to be complex and to involve multiple other
chemical messengers that contribute to the processes
associated with substance dependence. One of the
more important additional messengers is NO, a key
second messenger in the central and peripheral nerv-
ous systems that participates in a number of physio-
logical and pathophysiological processes [15, 31].
The results of some studies indicate that the NO path-
way may be involved in behavioral changes and neu-
ronal adaptation following the administration of vari-
ous abused substances. Inhibition of NO production
has been shown to attenuate or abolish morphine with-
drawal syndrome [10, 32, 57]. It was also observed that
administration of L-NAME and 7-nitroindazole, which
are NO synthase inhibitors, suppresses several behav-
ioral signs of ethanol withdrawal such as hyperactivity,
tremors and audiogenic seizures [1, 54]. Some authors
have also demonstrated an inhibitory action of NO syn-
thase inhibitors on precipitated nicotine withdrawal
syndrome manifested by weight loss, decreases in mo-
tor activity, diarrhea and irritability in rats [19, 39].
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Although there is evidence for interactions between
the NO and benzodiazepines/GABA� systems in the
central nervous system [13, 30, 56], studies that have
evaluated the role of NO in benzodiazepine depend-
ence are limited. Thus, the current studies were under-
taken to investigate the effect of the NO synthase in-
hibitors L-NAME and L-NOARG on the expression
of benzodiazepines withdrawal signs in mice and rats.

The major finding of our experiments is that the
administration of L-NAME and L-NOARG, which
are nonselective NO synthase inhibitors, significantly
attenuates pentetrazole-induced withdrawal syndrome
in diazepam-dependent mice. The clearest effects
were obtained after the application of L-NOARG.
This drug evoked a significant decrease in the number
of all measured incidents (clonic seizures, tonic con-
vulsions and deaths). Interestingly, total protection
against lethality was observed after administration of
both NO synthase inhibitors in diazepam-dependent
mice, but, in the case of L-NAME, the changes were
not significant. Administration of L-NOARG in
benzodiazepine-dependent rats also significantly sup-
pressed hypermotility in diazepam- and clonazepam-
dependent rats and inhibited the decrease in body
weight at 12 h in chlordiazepoxide- and clonazepam-
dependent rats. Moreover, L-NOARG protected the
benzodiazepines-dependent rats against audiogenic
seizures; however, this change was not significant.
The reason for the diversity we observed in the effects
of the NO synthase inhibitors on withdrawal from
various benzodiazepines is unclear and requires fur-
ther study. It is possible that frequency of audiogenic
seizures was an insufficiently precise measure of
withdrawal to distinguish the effects of NO synthase.
Other investigators have observed similarly diverse
results regarding the role of NO in withdrawal from
benzodiazepines. For example, it was shown that the
inhibition of NO synthase by L-NOARG did not pre-
vent diazepam [33] and clonazepam [34] withdrawal-
induced hyperexcitability in the electroshock model
but did prevent diazepam [33] and clonazepam [34]
withdrawal-induced hypersusceptibility to pentetra-
zole. In addition, administration of L-arginine, an NO
donor, raised the seizure threshold in the electroshock
model significantly when co-administered with diaze-
pam [33] and clonazepam [34] but had no effect on
diazepam [33] and clonazepam [34] withdrawal-
induced hypersusceptibility to seizure in the pentetra-
zole model [34, 52].

It is difficult to explain precisely which mechanisms
are involved in the observed effect of NO synthase in-
hibitors on the signs of benzodiazepine withdrawal. It
is possible that the interactions between the glutamater-
gic system and NO play some role in these phenomena.

NO plays several physiological roles in the brain, in-
cluding modulation of either the release or uptake of
several neurotransmitters, such as glutamate [14, 41].
Moreover, it is generally known that NO is an interme-
diate in the signaling provoked by glutamate. Activa-
tion of NMDA receptors increases intracellular Ca�� in
the postsynaptic neuron, leading to calcium binding to
calmodulin and the activation of NO synthase, which
stimulates the formation of NO in several brain regions
[11, 16]. Furthermore, it has been found that there is re-
ciprocal regulation between glutamate and NO; thus,
NO and glutamate may enhance their mutual release
and production [22]. Recent studies have shown a clear
role for glutamate neurotransmission in the develop-
ment of dependence produced by the administration of
a variety of psychoactive drugs. For example, it was
shown that blockade of NMDA receptors markedly re-
duced opioid withdrawal syndrome [10, 16]. There are
also reports demonstrating the inhibitory effects of
various NMDA receptor antagonists on ethanol [12,
21] and nicotine [18] withdrawal signs in rodents. Fur-
thermore, other studies have suggested important roles
for NMDA receptors and excitatory amino acid stimu-
lation in the signs of benzodiazepine withdrawal. For
example, some authors have demonstrated potent sup-
pression of several diazepam withdrawal signs by
NMDA receptor antagonists [43, 45, 53] and an upregu-
lation in the protein expression of NMDA receptor
subunits in diazepam-withdrawn rat cerebral cortex
[51]. Therefore, it is likely that the decrease in GABA
inhibition that occurs during withdrawal could lead to
the enhancement of the excitatory tone and thereby to
the activation of NO synthase, with subsequent release
of NO. This mechanism could explain, at least in part,
the attenuation of the expression of some of the signs
of diazepam withdrawal by NO synthase inhibitors ob-
served in our experiments.

In conclusion, the results of the present study show
that a decrease in the level of NO provoked by NO
synthase inhibitor administration exerts an inhibitory
effect on the some of the signs of benzodiazepine with-
drawal in mice and rats. These data implicate NO sig-
naling in the physical dependence produced by benzodi-
azepines. However, further studies are needed to clarify
the precise mechanism underlying our findings.
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