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Abstract:

The effects of sphingosine-1-phosphate (S1P) on bronchial smooth muscle (BSM) contractility were investigated in naive mice. S1P

had no effect on the basal tone of the isolated BSM tissues. However, in the presence of S1P (10�� M), the BSM contractions induced

by acetylcholine (ACh) and endothelin-1 (ET-1) were significantly augmented: both the ACh and ET-1 concentration-response

curves were significantly shifted to the left. In contrast, the pretreatment with S1P had no effect on the contractions induced by high

K� depolarization. It is thus possible that S1P augments BSM contraction induced by the activation of G protein-coupled receptors.
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Introduction

The dramatic increase in the number of asthma cases

over the last decades is of great concern for public

health worldwide [7]. Increased airway narrowing

in response to nonspecific stimuli is a characteristic

feature of human obstructive diseases, including bron-

chial asthma. This abnormality is an important sign of

the disease, although the pathophysiological varia-

tions leading to hyperresponsiveness are unclear. It

has been suggested that one of the factors that contrib-

utes to the exaggerated airway narrowing in asthmat-

ics is an abnormality of the properties of airway

smooth muscle [13, 20]. Rapid relief from airway

limitation in asthmatic patients by �-stimulant inhala-

tion may also suggest an involvement of augmented

airway smooth muscle contraction in airway obstruc-

tion. Thus, for development of asthma therapy, it may

be important to understand the changes in the contrac-

tile signaling of airway smooth muscle cells associ-

ated with the disease.

Sphingosine-1-phosphate (S1P) is a bioactive sphin-

golipid metabolite that mediates diverse biological re-

sponses, including smooth muscle contraction [9, 12,

14, 16, 21]. Recently, the involvement of S1P in aller-

gic bronchial asthma has been suggested [1, 8, 11, 15,

17–19]. Ammit and colleagues [1] first demonstrated

that S1P levels are elevated in the airways of indi-

viduals with asthma after segmental allergen chal-

lenge. The finding that S1P can act as a chemotactic

agent for eosinophils further suggests the involvement

of S1P in the pathophysiology of asthma [18]. Indeed,

inhalation of inhibitors of sphingosine kinase, which
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produces S1P directly from sphingosine, attenuated

antigen-induced airway inflammation in mice [15]. In

addition, S1P might have an ability to cause airway

hyperresponsiveness [8, 11, 17, 19]. Contrary to these

observations, inhalation of S1P itself or FTY720, an

S1P receptor agonist, prevented antigen-induced air-

way inflammation and hyperresponsiveness in mice

[10]. Thus, the role of S1P in the development of

asthma and airway hyperresponsiveness is still con-

troversial.

In the present study, the effects of S1P on agonist-

induced contraction were investigated in bronchial

smooth muscles (BSMs) isolated from naive mice to

determine whether S1P is involved in the augmented

BSM contractility, one of the causes of airway hyper-

responsiveness in asthmatics.

Materials and Methods

Animals

Male BALB/c mice were purchased from Charles

River Japan, Inc. (Kanagawa, Japan) and housed in

a pathogen-free facility. All animal experiments were

approved by the Animal Care Committee of Hoshi

University (Tokyo, Japan).

Functional studies

Mice were sacrificed by exsanguination from the ab-

dominal aorta under urethane anesthesia (1.6 g/kg, ip;

Sigma Aldrich, St. Louis, MO, USA), and the airway

tissues from the larynx to the lungs were immediately

removed. A segment of approximately 3 mm in length

of the left main bronchus (~0.5 mm diameter) was

isolated, and the epithelium was removed by gently

rubbing with sharp tweezers [6]. The resultant tissue

ring preparation was then suspended in a 5 ml organ

bath using two stainless-steel wires (0.2 mm diame-

ter) passed through the lumen. For all tissues, one end

was fixed to the bottom of the organ bath, and the

other was connected to a force-displacement trans-

ducer (TB-612T, Nihon Kohden) for the measurement

of isometric force. A resting tension of 0.5 g was ap-

plied. The buffer solution contained modified Krebs-

Henseleit solution with the following composition

(mM); NaCl 118.0, KCl 4.7, CaCl� 2.5, MgSO� 1.2,

NaHCO� 25.0, KH�PO� 1.2 and glucose 10.0. The

buffer solution was maintained at 37°C and oxygen-

ated with 95% O� – 5% CO�. The BSM responsive-

ness to agonists and isotonic high K� solutions was

measured as previously described [2]. The high K�

stimulation was carried out in the presence of atropine

and indomethacin (both at final concentrations of

10�� M) [2]. The tissues were also treated with S1P

(10�� M final concentration; Cayman Chemical Co.,

Ann Arbor, MI, USA) or its vehicle (methanol; at a fi-

nal concentration of 1%) 30 min prior to the applica-

tion of the stimulant.

Statistical analyses

All data were expressed as the mean with SE. The sta-

tistical significance of difference was determined us-

ing an unpaired Student’s t-test or two-way analysis

of variance (ANOVA) with a post-hoc Bonferroni/

Dunn test (StatView for Macintosh ver. 5.0, SAS In-

stitute, Inc., NC). A value of p < 0.05 was considered

significant.

Results and Discussion

As described above, the involvement of S1P in allergic

bronchial asthma has been suggested by the fact that

S1P levels are elevated in the airways of asthmatic in-

dividuals [1]; however, its physiological and/or patho-

physiological roles in the airways are not fully under-

stood. To determine the effects of S1P on BSM con-

tractility, the BSM tissues isolated from naive mice

were incubated with S1P (10�� M) for 30 min. Under

the experimental conditions currently used, S1P had no

effect on basal BSM tone (data not shown). In agree-

ment with this finding, Roviezzo and colleagues [19]

also revealed that S1P itself had no significant effect on

the basal tone of the BSMs isolated from BALB/c

mice. In contrast, Kume and colleagues [11] reported

a marked contraction from basal tone induced by S1P

(10�� M) in tracheal smooth muscles isolated from

guinea pigs. Some species and/or regional differences

may be involved in the difference in the S1P response

of airway smooth muscles. In addition, some tissue-

dependent differences in the contractile activity of S1P

might also exist because S1P itself has the ability to

contract smooth muscles of the rabbit stomach [9],
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mouse thoracic aorta [12], dog cerebral artery [14]

and cat esophagus [21] and to contract cultured hu-

man coronary artery smooth muscle cells [16] in the

concentration range of 10�� to 10�� M.

Figure 1 shows the contractile responsiveness to

acetylcholine (ACh; Fig. 1A), endothelin-1 (ET-1;

Fig. 1B), and high K� depolarization (Fig. 1C) of

BSMs isolated from normal mice. As shown in Figure

1A, the ACh concentration-response curve of BSMs

treated with S1P (10�� M) was significantly shifted to

the left: the pD� (–logEC��) value of the S1P-treated

BSMs (5.39 ± 0.35) was significantly greater than that

of the vehicle-treated muscles (4.89 ± 0.13, p < 0.05).

Similarly, the ET-1 responsiveness was significantly

augmented by the S1P treatment (Fig. 1B): the pD�

value of the S1P-treated BSMs (7.46 ± 0.07) was sig-

nificantly greater than that of the vehicle-treated mus-

cles (6.89 ± 0.05, p < 0.001). In contrast, S1P had

no effect on the BSM responsiveness to high K� depo-

larization (Fig. 1C). These findings suggest that

S1P has an ability to augment the contraction medi-

ated by G protein-coupled receptors (GPCRs). In hu-

man coronary artery smooth muscle cells, S1P in-

duced a contraction, which was inhibited by a Rho-

kinase inhibitor, Y-27632 [16]. In rabbit gastric

smooth muscle cells, S1P caused an activation of

Rho-kinase [9]. Our previous studies demonstrated

that the RhoA/Rho-kinase pathway is activated both

by ACh and ET-1, but not by high K� depolarization,

in rodent BSMs [3–6]. Taken together, these data sug-

gest that it is possible that S1P augments BSM con-

traction, probably by augmenting the agonist-induced

RhoA/Rho-kinase-mediated Ca�� sensitization in mice.

This hypothesis might also be supported by the report

that the S1P-mediated augmentation of methacho-

line-induced contraction was abolished by Y-27632 in

tracheal smooth muscles of guinea pigs [11].

In summary, the in vitro treatment with S1P aug-

mented the contraction induced by ACh and ET-1 in

BSMs of mice. Further detailed studies are needed to

elucidate the role of S1P in the pathogenesis of aller-

gic bronchial asthma.
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Fig. 1. Effects of in vitro treatment with sphingosine-1-phosphate (S1P) on bronchial smooth muscle responsiveness to acetylcholine (ACh;
A), endothelin-1 (ET-1; B), and isotonic high K� depolarization (in the presence of atropine and indomethacin, both 10�� M; C) in naive mice.
Smooth muscle preparations were isolated from the left main bronchi and were pretreated with S1P (10�� M) or its vehicle (1% methanol) 30 min
prior to the application of the stimulant. Each point represents the mean with the SEM from 5 different animals. * p < 0.05 and ** p < 0.001 vs.

the vehicle group by Bonferroni/Dunn’s test. Note that both of the concentration-response curves for ACh (A) and ET-1 (B) were significantly
shifted to the left in the S1P-treated group (p < 0.05, respectively, by two-way ANOVA)
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