

Modified C-reactive protein interacts with platelet glycoprotein $Ib\alpha$

Magdalena Boncler¹, Joanna Rywaniak¹, Jacek Szymański², Lawrence A. Potempa³, Błażej Rychlik⁴, Cezary Watała¹

¹Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Żeromskiego 113, PL 90-549 Łódź, Poland

Correspondence: Magdalena Boncler, e-mail: mboncler@csk.umed.lodz.pl

Abstract:

Herein, we investigated the possible mechanisms by which recombinant modified CRP (m_r CRP) modulates blood platelet function. Modified CRP could activate blood platelets and stimulate their adhesion and aggregation in the absence of any other physiological stimuli. Preincubation of isolated blood platelets with m_r CRP at a concentration as low as 2 μ g/ml resulted in significant platelet degranulation (fraction of CD62-positive platelets increased 2-fold, p < 0.0002), and at concentrations of 20 μ g/ml and 100 μ g/ml, increased exposure of the platelet procoagulant surface was observed (expression of annexin V-positive platelets increased to $5.7 \pm 1.0\%$ and $10.4 \pm 2.2\%$, respectively, p < 0.03, ν s. $2.9 \pm 0.2\%$ in control). Furthermore, m_r CRP (100 μ g/ml) strongly augmented spontaneous and ADP-induced fibrinogen binding to platelets (p < 0.05), platelet adhesion to fibrinogen and platelet aggregation. Using the BiacoreTM surface plasmon resonance technique and glycoprotein Ib α (GPIb α) immobilized on the sensor surface, we demonstrated direct binding between platelet GPIb α and m_r CRP. Binding of m_r CRP to GPIb α and C1q was also observed by ELISA, irrespective of the immobilized ligand. These outcomes strongly support a role of the GPIb-IX-V complex in the interactions of m_r CRP with blood platelets.

Key words:

C-reactive protein, glycoprotein Iba, platelet activation, procoagulant activity, aggregation, adhesion, surface plasmon resonance

²Department of Biophysics, Medical University of Lodz, Łódź, Poland

³Acphazin, Inc., Deerfield, Illinois, USA

⁴Department of Molecular Biophysics, University of Lodz, Łódź, Poland