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Abstract:

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs for the management of acute and chronic

pain. The role of the opioid system in the synergism between NSAIDs is not well characterized. Mice were injected with a 5% forma-

lin solution (20 �l) into the upper right lip to perform an orofacial formalin test. The isobolographic method was used to determine

the interaction between dexketoprofen, which is the (S)-(+) enantiomer of ketoprofen, and meloxicam co-administration. Addition-

ally, the non-selective, opioid antagonist naltrexone, the selective � opioid receptor (DOP) antagonist naltrindole and the selective �

opioid receptor (KOP) antagonist norbinaltorphimine were used to assess the opioid effects on this interaction. Intraperitoneal ad-

ministration of dexketoprofen or meloxicam induced dose-dependent antinociception with different phase I and phase II potencies in

the orofacial formalin test. Meloxicam displayed similar potencies (ED50) in phase I (7.20 mg/kg) and phase II (8.60 mg/kg). Dexke-

toprofen was more potent in phase I (19.96 mg/kg) than in phase II (50.90 mg/kg). The interactions between dexketoprofen and me-

loxicam were synergistic in both phases. This was determined based on the fixed ratios (1:1) of their ED50 values, which were

determined by isobolographic analysis. Furthermore, this antinociceptive activity does not seem to be modulated by opioid receptor

blockers because they did not induce changes in the nature of this interaction. This finding may be relevant with regards to NSAID

multi-modal analgesia where an opioid antagonist must be used.
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Introduction

Exaggerated or diminished effects will sometimes oc-

cur when drugs with similar effects are used concur-

rently [24]. In certain cases, co-administering antino-

ciceptive agents results in synergistic effects; there-

fore, the doses of each drug can be reduced [18].

Non-steroidal anti-inflammatory drugs (NSAIDs)

are among the most widely used classes of drugs for

the management of acute and chronic pain. They pre-
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vent the development of inflammation and produce

their analgesic effects by blocking the synthesis of

prostaglandins (PGs) in the periphery by inhibiting cy-

clooxygenase enzymes. These enzymes catalyze PG

synthesis from arachidonic acid. Three isoforms of cy-

clooxygenase (COX) have been identified: COX-1 (ex-

pressed constitutively throughout the body), COX-2

(expressed predominantly in inflammatory processes)

and COX-3 (a recently identified isoform that is

mainly located in the human cerebral cortex). NSAIDs

provide excellent analgesia for mild to moderate pain.

They are particularly useful in the initial management

of pain with an inflammatory component [21].

Opioids are the most effective drugs used in treating

severe pain, and they exert their actions by interfering

with pain in the central nervous system [11]. However,

unwanted side effects may seriously limit their clinical

use. Combinations of opioids and COX-2 inhibitors

have shown synergistic interactions and are in clinical

use for postoperative pain [12, 14]. To date, four opioid

receptors have been cloned: MOP (� for morphine),

KOP (� for ketocyclazocine), DOP (� for deferens; it

was first identified in mouse vas deferens) and NOP

(for nociceptin) [28]. However, there is a disparity be-

tween the existences of only four opioid receptor genes

and the substantial pharmacological evidence for addi-

tional opioid receptor phenotypes.

Few reports have studied the synergy between

COX-1 and COX-2 inhibitors using isobolographic

analysis in acute and inflammatory orofacial pain.

The purpose of the present study was to assess the in-

teraction between the (S)-(+) enantiomer of racemic

ketoprofen (dexketoprofen), which is a COX-1 inhibi-

tor [15] that inhibits PG activity, and a selective

COX-2 inhibitor (meloxicam) in a modified formalin

orofacial model [19]. In addition, we assessed the ef-

fects of opioid receptors on this interaction.

Materials and Methods

Male CF-1 mice (35–40 days old, weighing 29 ± 1.5 g)

were housed in a 12 h light-dark cycle at 22 ± 1°C,

and they had free access to food and water. The ani-

mals were acclimatized to the laboratory environment

for at least 2 h before the experiments began. Experi-

ments were carried out in accordance with the Na-

tional Institute of Health’s Guide for the Care and Use

of Laboratory Animals, and the Institutional Animal

Care and Use Committee at the University of Chile

(Santiago, Chile) approved all experimental proce-

dures. Each animal was used only once and received

only one dose of the drugs tested. All drugs were

freshly prepared in normal saline and administered

intraperitoneally (ip). All observations were performed

by the authors in randomized and blinded manners.

Control animals were given saline and were run inter-

spersed concurrently with the drug-treated animals (at

least two mice per group) to prevent the controls from

being run in a single group at one time.

Orofacial formalin test

The method described by Luccarini et al. [13] was

used for the orofacial formalin test with modifications.

To perform the test, a 5% formalin solution (20 µl) was

injected into the upper right lip of each mouse with

a 27-gauge needle. In the preliminary experiments,

different groups of mice were treated with different

formalin concentrations (1, 2 or 5%) to establish the

concentration-response relationships for both phases.

Based on these results, we selected the 5% formalin

dose because inhibition was easy to detect. After the

formalin injection, mice were immediately returned to

a glass observation chamber. The degree of pain in-

tensity was assessed by the total time that the animal

spent rubbing its lip with one of its extremities. Ad-

ministration of the analgesics (or saline solution for

the control group) and the opioid receptor blockers

occurred 30 min and 1 h, respectively, before formalin

administration. Two phases were distinguished during

the assay. Phase I corresponded to the 5-min period

starting immediately after formalin injection that rep-

resents tonic acute pain due to peripheral nociceptor

sensitization. Phase II was recorded as the 10-min pe-

riod starting 20 min after formalin injection and repre-

sents inflammatory pain. Drug effects were character-

ized after the administration of at least four doses in

logarithmic increments. The maximum possible effect

(MPE) was calculated as follows:

% MPE = 100 – [post drug rubbing time/control
rubbing time × 100]

The dose that produced 50% of the MPE (ED50)

was calculated from the linear regression analysis of

the curve that was obtained by plotting the log dose

vs. % MPE.
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Protocol

Dose-response curves were obtained for dexketopro-

fen or meloxicam administration (ip) using at least six

animals and at least four doses. Linear regression

analysis was performed on the log dose-response

curve. This analysis allowed for calculating the doses

that produced 50% antinociception when each drug

was administered alone. The ED50 values that were

used in the orofacial formalin test were the equieffec-

tive doses used in the isobolographic analysis. This is

because higher doses did not show increased effects

without motor impairment [17, 18]. A similar dose-

response curve was obtained and analyzed after the

co-administration of dexketoprofen with each of the

previously identified NSAIDs. These were adminis-

tered in fixed-ratio (1:1) combinations based on mix-

tures that were 1/2, 1/4, 1/8, and 1/16 of their respec-

tive ED5o values.

Isobolographic analysis

An isobolographic analysis was used to characterize

the drug interactions, and its method has been de-

scribed previously in detail [18]. An isobologram was

constructed by plotting the ED50 of dexketoprofen on

the abscissa and the ED50 of meloxicam on the ordi-

nate to obtain the additivity line. For the drug mixture,

the ED50 and its associated 95% confidence intervals

were determined by linear regression analysis of the

log dose-response curve (eight animals at each of at

least four doses). Using a Student’s t-test, the ED50

value was compared to a theoretical additive ED50 ob-

tained from the calculation:

ED50 add = ED50 meloxicam/(P1 + R × P2)

where R is the potency ratio of meloxicam alone to

dexketoprofen alone, and P1 and P2 are the propor-

tions of meloxicam and dexketoprofen in the total

mixture, respectively. Fixed-ratio proportions were

selected by first combining the ED50 value for each

compound. Next, a dose-response curve was con-

structed where ED50 fractions (1/2, 1/4, 1/8 and 1/16)

of dexketoprofen and meloxicam combinations were

administered. Using the equation above, ED50 add

was the total dose, and the ED50 add variance was cal-

culated from the fraction of the ED50 values (i.e., 0.5)

in the combinations as follows:

Var ED50 add = (0.5)2 Var ED50 meloxicam +
(0.5)2 Var ED50 dexketoprofen

From these variances, confidence limits were cal-

culated and resolved according to the ratio of the indi-

vidual drugs in the combination. The ED50 for the

drug combinations were obtained by linear regression

analysis of the dose-response curves. Supra-additivity

or synergistic effect is defined as the effect of a drug

combination that is higher and statistically different

(ED50 significantly lower) than the theoretically cal-

culated equieffective drug combination with the same

proportions. If the ED50 values are not statistically dif-

ferent, the effect of the combination is additive, and

additivity means that each constituent contributes

with its own potency to the total effect. The interac-

tion index (I.I.) was calculated as the experimental

ED50/the theoretical ED50. Values close to 1 show

additive interactions. Values lower than 1 indicate

supra-additive or synergistic interactions, and values

higher than 1 correspond to sub-additive or antagonis-

tic interactions [16, 18].

Drugs

All drugs were freshly dissolved in saline in a con-

stant volume of 10 ml/kg and administered ip. Dexke-

toprofen and meloxicam were administered at doses

between 1 and 300 mg/kg. The opioid antagonists’

doses were adapted or modified from previously pub-

lished studies that showed the pharmacological activ-

ity of each individual receptor subtype, and these

doses were tested at the peak effect (30 min) [20, 22,

29, 31]. Dexketoprofen was a gift from Menarini

Laboratories (Spain), meloxicam was purchase from

Saval Laboratories, Chile and naltrexone hydrochlo-

ride, naltrindole hydrochloride and norbinaltorphimine

dihydrochloride were purchased from Sigma Chemi-

cal Co. (USA).

Statistical analyses

Results are presented as the mean ± SEM or as ED50

values with 95% confidence limits (95% CL). Isobo-

lographic calculations were performed with Pharm

Tools Pro (version 1.1.27, The McCary Group Inc.)

based on Tallarida [25]. Statistical analysis of the iso-

bolograms was performed according to Tallarida [25]

and differences between experimental and theoretical

values were assessed by a Student’s t-test for inde-

pendent means; p values less than 0.05 (p < 0.05)

were considered significant.
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Results

Nociceptive behavioral responses

The time course of the nociceptive responses to the

modified orofacial formalin test is presented in Figure

1. The nociceptive responses presented with typical

biphasic time courses of an early, short-lasting (5 min)

first period of activity (Phase I), a 15-min quiescent

period, and a second, prolonged (10 min) tonic phase

(Phase II).

Antinociception induced by analgesic drugs

Administration of dexketoprofen or meloxicam in-

duced dose-dependent antinociceptive activity with

different potencies in Phase I and Phase II of the oro-

facial formalin test. The dose response curves for the

different NSAIDs are presented in Figure 2. The

phase I and in phase II dose response curves were sta-

tistically parallel, and the slopes for dexketoprofen

and meloxicam were 38.48 ± 3.17 and 44.88 ± 2.61,

respectively. Meloxicam displayed similar potencies

in both phases; however, dexketoprofen was 3-fold

more potent in phase I than in phase II (Tabs. 1 and 2).
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Tab. 1. Dexketoprofen (DEX) and meloxicam (MELO) ED
��

values
and interaction indexes (I.I.) in phase I of the orofacial formalin test,
and the effects of opioid blockers (naltrexone (NTX), naltrindole (NTI)
and norbinaltorphimine (Nor-BNI)) on these values

Drugs ED50 I.I.

DEX 19.9 ± 2.02

MELO 7.20 ± 1.45

DEX + MELO theoretical 13.6 ± 0.04

DEX + MELO experimental 5.61 ± 0.23* 0.413

DEX + MELO + NTX 3.36 ± 0.49* 0.247

DEX + MELO + NTI 5.33 ± 0.82* 0.437

DEX + MELO + Nor-BNI 3.20 ± 0.49* 0.259

* p < 0.05 vs. DEX + MELO theoretical

Tab. 2. Dexketoprofen (DEX) and meloxicam (MELO) ED
��

values
and interactions indexes (I.I.) in phase II of the orofacial formalin test,
and the effects of opioid blockers (naltrexone (NTX), naltrindole (NTI)
and norbinaltorphimine (Nor-BNI)) on these values

Drugs ED
50 I.I.

DEX 50.9 ± 7.14

MELO 8.60 ± 0.80

DEX + MELO theoretical 29.7 ± 0.06

DEX + MELO experimental 4.36 ± 0.50* 0.147

DEX + MELO + NTX 6.88 ± 0.83* 0.298

DEX + MELO + NTI 5.02 ± 0.82* 0.174

DEX + MELO + Nor-BNI 5.10 ± 0.73* 0.171

* p < 0.05 with respect to DEX + MELO theoretical

Fig. 1. Time course of the grooming
activity in mice during the orofacial for-
malin test. Saline (�), 1% formalin (�),
2% formalin (�) and 5% formalin (�).
Each point represents the mean with
SEM of at least 6 mice



Interaction between dexketoprofen

and meloxicam

Isobolographic analysis was used to calculate the in-

teractions between dexketoprofen and meloxicam

based on the fixed ratios (1:1) of their ED50 values.

The theoretical additive ED50 values and the experi-

mental ED50 values for the fixed ratio combinations

are shown in Tables 1 and 2. Synergistic interactions

between dexketoprofen with meloxicam are shown in

Figure 3. The interaction index values of the different

phase combinations are shown in Tables 1 and 2.

Effects of opioid antagonists on the interaction

between dexketoprofen and meloxicam

The opioid antagonists naltrexone (0.1 mg/kg, ip),

naltrindole (0.1 mg/kg, ip) and norbinaltorphimine

(0.1 mg/kg, ip) did not possess intrinsic effects in the

orofacial formalin test. They were also not able to sig-

nificantly modify the magnitude of dexketoprofen’s

and meloxicam’s antinociceptive effects (data not

shown). Pre-treating animals with these opioid recep-

tor blockers did not induce any significant changes in

the antinociceptive activity of dexketoprofen and me-

loxicam in either phase I or phase II (p < 0.05) (Fig. 4)

Corresponding I.I. values are summarized in Tables 1

and 2.

Discussion

The ip administration of either dexketoprofen or me-

loxicam to mice induced dose-dependent antinocicep-

tive activity in a modified orofacial formalin test.

These results are in agreement with the antinocicep-

tive activities of these NSAIDs in other algesiometric

assays, such as acetic acid writhing, formalin hind

paw, tail-flick, and hot plate [18–20, 25]. In this study,

a 5% formalin concentration was used because it was

easy to detect the inhibitory treatment in both phases

of the assay.

The parallel dose-response curves that were ob-

tained with dexketoprofen and meloxicam in both

phases are consistent with similar mechanisms of ac-

tion, such as inhibiting COXs [9]. It is well known

that dexketoprofen acts principally through inhibiting

COX-1 [15], and meloxicam is a selective and spe-

cific COX-2 inhibitor [4, 10].
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A

B

Fig. 2. Dose-response curves for the antinociceptive activities in
mice that were induced by intraperitoneal administration of dexketo-
profen (A) and meloxicam (B) in phase I (�) and phase II (�) of the
orofacial formalin test. Each point is the mean ± SEM of 6–8 animals.
MPE = maximum possible effect. Linear regressions for dexketopro-
fen: y = 42.638x + (–5.44) and y = 38.485x + (–15.683) for phase I
and II, respectively. Linear regressions for meloxicam: y = 47.814x
+ (8.916) and y = 44.886x + (8.032) for phase I and II, respectively

0

2

4

6

8

10

0 5 10 15 20 25

ED Dexketoprofen, mg/kg

E
D

M
e

lo
x

ic
a

m
,
m

g
/k

g

Phase IA

0

2

4

6

8

10

0 10 20 30 40 50 60

ED Dexketoprofen, mg/kg

E
D

M
e

lo
x

ic
a

m
,
m

g
/k

g

B

Fig. 3. Phase I (A) and phase II (B) isobolograms for the co-
administration of dexketoprofen and meloxicam using the orofacial
formalin test in mice. Theoretical ED
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value with 95% CL (�). Experi-

mental ED
��

value with 95% CL (�)



In this study, an isobolographic analysis was used

to determine that the interaction between dexketopro-

fen and meloxicam was synergistic during the first

and second phases of the assay. This result can be ex-

plained by the different mechanisms of action that

each NSAID has towards the COXs [23]. The precise

mechanisms of pain control in orofacial pain are

largely unknown; however, the trigeminal system ap-

pears to be engaged [19]. The mechanisms responsi-

ble for the synergistic, antinociceptive activities be-

tween NSAIDs are also not clear. There are a number

of possible mechanisms to explain the synergistic in-

teractions among analgesic drugs, and they involve

virtually all levels of cell function [2]. For example,

dexketoprofen might enhance the affinity of meloxi-

cam for its respective COX, decrease the rate of

elimination of the NSAID, and enhance G-protein ac-

tivation to consequently increase NSAID activity.

Furthermore, the use of multiple drugs with different

mechanisms of action may also be the basis for this

synergism [6].

Opioid blockers did not alter the synergism that

was induced by dexketoprofen and meloxicam be-

cause the I.I. was not significantly modified. The ab-
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C D

E F

Fig. 4. Phase I and phase II isobolograms for the co-administration of dexketoprofen and meloxicam using the orofacial formalin test in mice.
Theoretical ED

��
with 95% CL (�). Experimental ED

��
with 95% CL (�). Experimental value obtained after pretreatment with naltrexone (NTX,

0.1 mg/kg; A and B), naltrindole (NTI, 0.1 mg/kg; C and D) and norbinaltorphimine (NOR- BNI, 0.1 mg/kg; E and F) (�)



sence of an antinociceptive interaction between the

opioid blockers and the NSAIDs may be due to the

opioid concentrations used (mg/kg). It has been re-

ported that opioid blockers induce antinociceptive ac-

tivities by themselves only at ultra-low concentrations

[5, 7, 23]. Studies have demonstrated that opioid

blockers can enhance the activity of co-administered

drugs, such as morphine, and, therefore, the doses

normally needed to achieve antinociceptive activity

can be reduced [1, 5].

Another reason why these blockers did not affect the

activity of dexketoprofen and meloxicam may be be-

cause they did not alter the pharmacokinetic or meta-

bolic parameters of these drugs. These results are in ac-

cordance with reports showing no effects of naltrexone

on the synergism between combinations of NSAIDs

with morphine [17]. Furthermore, similar ineffective-

ness has been reported with naltrindole on a similar

type of synergistic combination [16]. However, data are

controversial with regards to norbinaltorphimine. It has

been reported in some studies that this agent attenuates

morphine antinociception [3, 8], but in other studies,

no effect on morphine antinociception has been noted

[24, 26]. In inflammatory orofacial pain, the antino-

ciceptive interaction between meloxicam and ketopro-

fen and the role of K+-Cl– co-transporter 2 downregula-

tion that is induced by formalin cannot be excluded

[30]. However, new research exists on the role of PGs

in peripheral and central sensitization processes that

occur after injury. This research seems to open up new

opportunities for using non-opioid analgesics for anti-

inflammatory effects [21].

In conclusion, the present study shows that co-

administering dexketoprofen and meloxicam produces

synergic antinociception in both phases of the formalin

orofacial assay. In addition, this antinociceptive activity

does not seem to be modulated by the opioid system.

This finding may be relevant in NSAID multi-modal an-

algesia where an opioid antagonist must be used.
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