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Abstract:

This study examined the effects of norepinephrine (NE) and phentolamine on the electrical activities of pain-excited neurons (PENs)

and pain-inhibited neurons (PINs) in the nucleus accumbens (NAc) of Wistar rats. Trains of electric pulses applied to the right sciatic

nerve were used to provide noxious stimulation, and the discharges of PENs and PINs were recorded using a glass microelectrode.

Our results revealed that in response to noxious stimulation, NE decreases the evoked discharge frequency of PENs and increases the

evoked discharge frequency of PINs in the NAc of healthy rats, whereas phentolamine produced opposite responses. These results

demonstrate that NE is involved in the modulation of nociceptive information transmission in the NAc.
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Introduction

Norepinephrine (NE) is an important neurotransmitter

in the rat brain. The noradrenergic system, which uses

NE as the main neurotransmitter, participates in mul-

tiple brain functions, including arousal, attention,

mood, learning, memory, and stress responses [16].

The effects of NE on pain are complex. The role of

NE in pain is dependent on its specific site of action in

the central nervous system (CNS), the distribution of

noradrenergic receptor subtypes, the duration of the

pathological pain state, and the situation at that time.

The cell bodies of noradrenergic neurons are primar-

ily localized in the medulla oblongata and the pons.

The descending inhibitory system, which can modu-

late pain transmission in the spinal cord, is composed

of many brain structures that converge on the brain-

stem. NE and other chemical substances play impor-

tant roles in the descending inhibitory system [7].

Some studies have shown that NE inhibits C fibers,

which transmit the peripheral noxious stimulation to

the spinal cord lateral horn [11].

�����������	��� 
������ ����� ��� ������� 417

�����������	��� 
�����

����� ��� �������

	

� ���������

�������� � ����

�� 	�������� �� ������ �!���

��!��� " �#��� �� 
 ��� ��

* These authors contributed equally to this research.



The nucleus accumbens (NAc) is located at the

junction of the limbic system and the basal ganglia.

Various projections from different regions of the brain

converge on the NAc, which regulates various bodily

functions, such as behavior, drug addiction, schizo-

phrenia, learning, sports memory, cardiovascular ac-

tivities, etc. [12]. The role of the NAc in analgesia has

been debated by scholars. The NAc is rich in endoge-

nous opioid peptides and plays an important role in

pain transmission and modulation in the CNS. The

NAc may be another structure in which opioid pep-

tides and CCK interact to regulate pain [10]. The as-

cending projections from the periaqueductal gray

matter (PAG) to the NAc and the descending projec-

tions from the NAc to the PAG are involved in anal-

gesia. Our laboratory has demonstrated that the gluta-

mic acid, dizocilpine maleate and N-methyl-D-

aspartate receptors are involved in the modulation of

nociceptive information transmission in the NAc. In

recent years, a number of studies have confirmed the

presence of NE in the NAc and demonstrated that it

plays a central role in the regulation of pain [19].

In the present study, we used extracellular electro-

physiological recording techniques to investigate the ef-

fects of NE and phentolamine in the NAc on the evoked

electrical activities of pain excitet neurons (PENs) and

pain inhibited neurons (PINs) in the NAc of healthy rats,

and we revealed the role of NE and NAc in central an-

algesia production and modulation.

Materials and Methods

Animals

Male and female Wistar rats (Animal Center of the sec-

ond Affiliated Hospital, Harbin Medical University,

Certificate No. 09-2-1), weighing 200–260 g were

used in this study. The experimental procedures were

approved by the Institutional Animal Care and Use

Committee at both CCMU and FMMU. All animals

were maintained and cared for in compliance with the

guidelines set forth by the International Association

for the Study of Pain [24]. The number of animals

used and their suffering were greatly minimized. The

rats were divided into the following 3 groups: (1) con-

trol group: intra-NAc injection of normal saline,

0.5 µl; (2) NE group: intra-NAc injection of NE,

2 µg/0.5 µl; and (3) phentolamine group: intra-NAc

injection of phentolamine, 2 µg/0.5 µl. All injections

were completed within 2 min via a microliter syringe.

Neurosurgery and electrophysiological studies

Routine surgery was performed after rats were anes-

thetized with 20% urethane injected intraperitoneally

(1 g/kg). The right sciatic nerves were isolated. Two

skull windows were created and liquid paraffin was

used to cover the windows. According to the stereo-

taxic coordinate system of Pellegrino’s atlas [13], the

rat was fixed on a stereotaxic frame (SN-2, Narishige,

Japan). The rat’s head must be in a fixed position such

that the interaural line is exactly 5 mm below the level

of upper incisor bar. The skull landmark, bregma, was

used as the rostrocaudal zero reference point. After

4–10 min, the rat was paralyzed with tubocurarine

chloride (1 mg/kg), and artificial ventilation was

maintained. The experiment used extracellular record-

ing techniques. Single-unit recordings of neuronal

electric activity were performed with a glass microe-

lectrode (tip extreme diameter: 0.5–1.0 µm, DC resis-

tance: 10–30 M�) filled with KCl (3 mol/l). The glass

microelectrode was inserted using a micromanipulator

(SM-21, Narishige, Japan) into the NAc (A: 3.2–4.0 mm;

R or L: 1.0–1.8 mm; H: 6.2–7.0 mm) to record the dis-

charges of the neurons in the NAc [13]. Another glass

microelectrode was inserted using a micromanipulator

(SM-11, Narishige Japan) into the NAc (A: 3.6 mm; R

or L: 1.6 mm; H: 6.2 mm) for the administration of

drugs. The electrical activity was amplified with a mi-

croelectrical amplifier (signal high frequency filter:

3 kHz, low frequency filter: 0.01 s, amplification: 100-

fold), recorded with a biological experimental system

and concurrently monitored with an oscilloscope (VC-9,

Nihon Konden, Japan). As the neural discharges were

recorded, electrical stimulation of the sciatic nerves was

performed through a double stainless steel electrode (de-

lay: 0 ms, interval: 5 ms, intensity: 5 mA, duration:

0.3 ms, train: 5; SEN-3301, Nihon Konden, Japan) to

produce noxious stimulation. Articular movement and

hair touching were used as the non-noxious stimulation

to identify the pain-related neurons. The discharge of

each neuron was recorded 3 times every 2 min, and the

complete recording duration was 30 min.

Definition of neurons

The neurons recorded in the NAc were divided into

3 types: 1. unallide neurons, which do not react to
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noxious stimuli or non-noxious stimuli; 2. convergent

neurons, which respond to both noxious stimuli and

non-noxious stimuli; and 3. pain-related neurons, which

only respond to noxious stimuli. Pain-related neurons

can be subdivided into PENs and PINs. PENs are de-

fined as neurons that respond to noxious stimuli by in-

creasing their discharge frequency [22], whereas PINs

are defined as neurons that respond to noxious stimuli

by decreasing their discharge frequency [18]. This

study principally observed and recorded the electrical

activities of PENs and PINs. The net increased value

(NIV, Hz) refers to the difference in the average fre-

quency of evoked discharges after noxious stimulation

and the average frequency of the discharges within 2 s

before noxious stimulation between PENs and PINs.

Inhibitory duration (ID, ms) refers to the latency be-

tween the noxious stimulation and the appearance of

the PIN discharges.

Histological identification

At the end of the experiment, 2% pontamine sky blue

was diffused through the microelectrode using a nega-

tive direct current (30 µA, 15 min) to identify the tip

position of the recording microelectrode.

Statistical analysis

Data were uploaded to a computer with Powerlab/8 s

(ADInstruments) and analyzed with Chart v5.3 software

(Australia). All data were expressed as the mean ± SEM

and analyzed with SPSS 13.0 software. Statistical dif-

ferences were evaluated by one-way ANOVA, and

p < 0.05 was considered to be statistically significant.

Results

Effects of normal saline on the evoked dis-

charges of pain-related neurons in the rat NAc

In the control group, intra-NAc administration of nor-

mal saline produced no significant changes in either

the PENs or the PINs (Fig. 1a and Fig. 2a).

Influence of NE on the electrical activities of

pain-related neurons in the rat NAc

In the NE group, the average latency of the 22 PENs was

0.19 ± 0.05 s, and the average NIV was 4.36 ± 0.57 Hz.

Shortly after the intra-NAc injection of NE, the latency

of the PENs began to increase, and the NIVs began to

decrease (Fig. 1b). These effects peaked at 6 min after

administration; at the peak, the average latency was 0.85

± 0.14 s, and the average NIV was 0.64 ± 0.01 Hz. Dur-

ing 4–14 min after NE administration, the average la-

tency and NIV of the PENs showed obvious changes

compared to the average latency and NIV prior to NE

administration or compared to those of the control group

(p < 0.05, Fig. 3). At 20 min after NE administration,

the latency and NIV of the PENs started to return to pre-

treatment values.
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Fig. 1. (a) Effects of an intra-NAc injec-
tion of saline on the evoked discharges
of PENs in the NAc. (b) Effects of an
intra-NAc injection of NE on the evoked
discharges of PENs in the NAc. (c) Ef-
fects of an intra-NAc injection of phen-
tolamine on the evoked discharges of
PENs in the NAc. �– Stimulus artifact;
�– injection of saline; � – injection of
NE; � – injection of phentolamine; X –
before injection; 0, 6, 20 – time after in-
jection (min)



The average ID of the 16 PINs was 1.38 ± 0.69 s, and

the NIV was –2.15 ± 0.98 Hz. After the intra-NAc injec-

tion of NE, the ID of the PINs began to shorten, and the

NIV began to increase (Fig. 2b). These changes peaked

at 6 min after NE injection; the average ID decreased to

0.48 ± 0.07 s, and the NIV increased to –0.03 ± 0.01 Hz.

During 2–12 min after the injection, the average ID and

NIV exhibited clear changes compared to those before

the injection or those of the control group (p < 0.05,

Fig. 4). The average ID and NIV of the PINs started to

recover 22 min after the NE injection.

Effects of phentolamine on the electrical activi-

ties of pain-related neurons in the NAc of rats

In the phentolamine group, the average latency of the

21 PENs was 0.17 ± 0.02 s, and the NIV was 3.65 ±

0.95 Hz. After the intra-NAc administration of phen-
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Fig. 2. (a) Effects of an intra-NAc injec-
tion of saline on the evoked dis-
charges of PINs in the NAc. (b) Effects
of an intra-NAc injection of NE on the
evoked discharges of PINs in the NAc.
(c) Effects of an intra-NAc injection of
phentolamine on the evoked dis-
charges of PINs in the NAc. � – Stimu-
lus artifact; �– injection of saline; � –
injection of NE; � – injection of phento-
lamine; x – before injection; 0, 6, 20 –
time after injection (min)

Fig. 3. Influences of intra-NAc injec-
tions of different substances on the la-
tency (a) and NIV (b) of PENs in the
NAc. — – injection of substance; x –
before injection; 0, 2,……, 30 – time after
injection (min); values are expressed as
the means ± SEM; * p < 0.05, ** p < 0.01
compared to the saline group

Fig. 4. Influences of intra-NAc injec-
tions of different substances on the ID
(a) and NIV (b) of PINs in the NAc. — –
injection of substance; x – before
injection; 0, 2,……, 30 – time after
injection (min); values are expressed
as the means ± SEM; * p < 0.05, ** p <
0.01 compared to the saline group



tolamine, the latency of the PENs began to shorten,

and the NIV began to increase (Fig. 1c). These effects

peaked at 6 min after administration; the average la-

tency decreased to 0.07 ± 0.01 s, and the NIV in-

creased to 7.51 ± 0.98 Hz (p < 0.05, Fig. 3).

The average ID of the 18 PINs was 1.23 ± 0.18 s,

and the NIV was –2.85 ± 0.99 Hz. After the injection

of phentolamine, the ID began to prolong, and the

NIV began to reduce (Fig. 2c). At 6 min after phento-

lamine administration, the average ID of the PINs in-

creased to 3.17 ± 0.48 s, and the NIV decreased to

–6.94 ± 0.03 Hz. At 24 min after phentolamine ad-

ministration, the average ID and NIV of the PINs re-

turned to the values observed before treatment (p <

0.05, Fig. 4).

Discussion

We studied the effects of NE and phentolamine on the

electrical activities of PENs and PINs in the NAc of

normal rats. The results of our study revealed that NE

inhibits the electrical activities of PENs and enhances

those of PINs. Additionally, phentolamine enhanced

the electrical activities of PENs and inhibited those of

PINs, demonstrating the antagonism between the ef-

fects of phentolamine and those of NE in the NAc.

These results illustrate that NE is involved in the

modulation of nociceptive information transmission

in the NAc. Furthermore, PENs and PINs may be con-

sidered to be indices of pain research [15, 21]. PENs

and PINs have opposite responses to identical sub-

stances, which may account for the effects of NE and

phentolamine on pain modulation.

The analgesic effect of catecholamines is not con-

stant (especially NE). Previous experiments in our

laboratory have demonstrated that intracerebroven-

tricular NE injections (10 µg/10 µl) produced analge-

sic effects [8]. In this study, we demonstrated that NE

injection into the NAc also has an analgesic effect.

NE is widely distributed in the brain. The descending

inhibitory system, which can modulate spinal cord

pain transmission, is composed of many brain struc-

tures that converge on the brainstem. NE, 5-hydroxy-

tryptamine (5-HT), and other chemicals play impor-

tant roles in the descending inhibitory system [7]. NE

inhibits peripheral C fibers that transport the noxious

stimulation to the spinal cord lateral horn [11]. NE re-

uptake inhibitors have been shown to reduce the early

pain sensations caused by noxious stimulation [6].

Monoamines, including NE, dopamine (DA), 5-HT,

etc., regulate the excitability of dorsal horn neurons

and nociceptive pain through different neurotransmit-

ter receptor subtypes [2]. NE has little effect on pain

sensations under basal conditions, but long-lasting

pain may promote NE-mediated inhibition of pain due

to negative feedback [14]. 5-HT and NE are involved

in pain modulation via descending inhibitory path-

ways in the brain and spinal cord [20]. Previous ex-

periments have demonstrated that an intrathecal injec-

tion of NE produces a stronger analgesic effect than

5-HT, which suggests that there is a close relationship

between the noradrenergic system and the pain modu-

lation system [9].

The pain-suppressing system, which involves the

activation of mesolimbic DA neurons, is naturally

triggered by exposure to stress, pain or both [1]. Our

laboratory has confirmed that the NAc contains PENs

and PINs that have specific responses to nociceptive

stimulation [23]. The NAc receives projections from

glutamatergic, serotonergic, and noradrenergic neu-

rons. The NAc contains a large number of endoge-

nous opioid peptides and plays an important role in

the control of pain transmission and modulation. The

NAc may be another structure that modulates pain

through the interaction between opioid peptides and

cholecystokinin (CCK) [4]. A body of evidence sug-

gests that dopamine (DA) is co-released with NE from

noradrenergic terminals of the prefrontal cortex [4, 5].

Previous studies on descending inhibition of pain

have focused on the dopamine-rich NAc, a striatal

subdivision that contains a NE-poor rostral portion

and a NE-rich caudomedial subdivision [19]. The ma-

jor neurotransmitter of the NAc is DA, and DA recep-

tors are abundant in the NAc, especially the D� recep-

tor [3, 17]. Studies have confirmed that there are

equal levels of NE and DA neurotransmitters in the

NAc [4]. Phentolamine is an NE receptor antagonist.

In our study, phentolamine had the opposite effect of

NE on the electrical activities of pain-related neurons

in the NAc.

In conclusion, our results indicate that NE modu-

lates nociception by inhibiting PEN activity and po-

tentiating PIN activity, whereas the �-adrenoceptor

antagonist phentolamine produced opposite effects.

Further investigations are required to determine which

mechanism predominates in the nociception mediated

by the NAc.
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