

Pharma cological Reports 2011, 63, 381–391 ISSN 1734-1140 Copyright © 2011 by Institute of Pharmacology Polish Academy of Sciences

Increases in β -amyloid protein in the hippocampus caused by diabetic metabolic disorder are blocked by minocycline through inhibition of NF- κ B pathway activation

Zhiyou Cai¹, Yu Zhao², Shengtao Yao³, Bin Zhao¹

¹Department of Neurology, the Affiliated Hospital, Guangdong Medical College, Zhanjiang, China, 524023

²Department of Neurology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China, 150001

³Department of Neurosurgery, the Third Affiliated Hospital, Zunyi Medical College, Zunyi, China, 563003

Correspondence: Bin Zhao, e-mail: zhaobin0759@gmail.com

Abstract:

Activation of the NF- κ B pathway plays an important role in the pathophysiology of Alzheimer's disease (AD), and blocking NF- κ B pathway activation has been shown to attenuate cognitive impairment. Diabetic metabolic disorder contributes to β -amyloid protein (A β) generation. The goal of this study was to determine the effect of minocycline on A β generation and the NF- κ B pathway in the hippocampus of diabetic rats and to elucidate the neuroprotective mechanisms of minocycline for the treatment of diabetic metabolic disorder. The diabetic rat model was established using a high-fat diet and an intraperitoneal injection of streptozocin (STZ). Behavioral tests showed that the capacity of learning and memory was significantly lower in diabetic rats. The levels of NF- κ B, COX-2, iNOS, IL-1 β and TNF- α after the STZ injection were significantly increased in the hippocampus. Significant increases in A β , BACE1, NF- κ B, COX-2, iNOS, IL-1 β and TNF- α were found in diabetic rats. The levels of A β , NF- κ B, COX-2, iNOS, IL-1 β and TNF- α were significantly increased in the hippocampus. Significant increases in A β , BACE1, NF- κ B, COX-2, iNOS, IL-1 β and TNF- α were found in diabetic rats. The levels of A β , NF- κ B, COX-2, iNOS, IL-1 β and TNF- α were significantly decreased after minocycline administration; however, minocycline had no effect on BACE1 expression. In sum, diabetes contributes to the activation of the NF- κ B pathway and upregulates BACE1 and A β . Minocycline downregulates A β in the hippocampus by inhibiting NF- κ B pathway activation.

Key words:

diabetes mellitus, minocycline, β-amyloid protein, NF-κB