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Abstract:

As shown in clinical studies, combinations of first generation normothymics (carbamazepine – CBZ) with atypical neuroleptics

(olanzapine – OLA) lead to improvements in approximately half of patients treated for relapses of bipolar affective disease. Our pre-

vious studies have shown OLA to have an antidepressant effect when administered at a dose of 0.5 mg/kg only upon single admini-

stration; the effect did not last throughout chronic administration, whereas CBZ administered at a dose of 30 mg/kg showed an

antidepressant effect only after 7 days of administration. As shown in our previous studies, both OLA and CBZ improve memory in

rats but only after chronic administration. The improved antidepressant effect of many drugs, including OLA and CBZ used in com-

bined therapy – as observed in our clinic – as well as confirmed evidence of OLA’s and CBZ’s positive effects on cognitive functions

in humans and animals substantiated commencement of research on defining the effect of combined administration of OLAand CBZ

on sedation (tested in a locomotor activity test), antidepressant effect (Porsolt test) and spatial memory (Morris test) in animals. The

tests were performed on male Wistar rats. It was found that in combined administration of CBZ and OLA for 7 and 14 days, OLA

would completely prevent the CBZ’s sedative effect. With combined administration of CBZ and OLA, both as a single dose and after

prolonged treatment for 7 days, a significant reduction in immobility time was observed. Combined administration of CBZ and OLA

did not improve memory in rats that received these drugs in a single dose, whereas statistically significant differences were observed

in the chronic experiments. It can be assumed that the observed effects of combined administration of CBZ and OLA may be due to

the pharmacokinetic interactions, but further studies are necessary to confirm these assumptions.
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Introduction

Previous experience treating bipolar affective disease in-

dicates that, in some patients, monotherapy with a nor-

mothymic drug alone does not yield optimal results, and

improvement is achieved only with combined therapy.

This applies in particular to treating mania and preventing

its relapses [34]. In mania therapy, usually combinations

of first generation normothymics (lithium and valproate)

or combined therapy (lithium or valproate with a neuro-

leptic, e.g., olanzapine OLA) are used, which leads to

clinical improvement [35, 44].
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As shown in clinical studies, combinations of two

first generation normothymics (lithium, carbamazepine

(CBZ) or valproate) or combining first generation nor-

mothymics with atypical neuroleptics (OLA) or lamo-

trigine leads to improvement in approximately half of

the patients treated for relapses of the bipolar affective

disease [34]. It has also been found that the addition of

OLA to first generation normothymics gives higher ef-

fectiveness in preventing relapses compared to mono-

therapy with these drugs [44]. In grave forms of bipolar

affective disease, for example, those with frequent

phase changes, the use of combined therapy is already

recommended at the beginning of the treatment [33].

At the same time, in patients treated for bipolar af-

fective disease or schizophrenia a deterioration of

cognitive functions, in particular memory, is ob-

served, which adversely affects quality of life of these

patients as well as their functioning in the society and

at work [6]. It has been found that cognitive function

deficits in bipolar affective disease may be mitigated

with pharmacotherapy, although it should be noted

that some drugs (typical neuroleptics) do not improve

cognitive skills and even deteriorate them due to their

antimuscarinic and antidopaminergic actions [20, 38].

As shown in clinical studies and meta analyses, atypi-

cal drugs improve cognitive functions mainly in the ar-

eas of memory and learning, verbal fluency or motor

skills [20, 50]. Improvement of cognitive functions also

entails treatment with normothymic drugs mainly be-

cause of their effect on processes related to transmission

of intracellular signals [10]. As shown in our previous

studies, both OLA and CBZ improve memory in rats but

only with chronic administration (7 and 14 days) [26].

The present study was conducted to investigate the

efficacy of the combined use of OLA (atypical antipsy-

chotic) with CBZ (classified as normothymic drug) on

spatial memory functions in the Morris test. The Mor-

ris water maze test is a challenging task for rodents that

is used to study learning behavior that comprises ac-

quisition, consolidation and retrieval [21].

Keeping in mind that combining CBZ and OLA

brings measurable clinical benefits in the therapy of

bipolar affective disease, the antidepressant activity of

these substances as well as the effect of their com-

bined administration on antidepressant activity still

needs to be confirmed in clinical as well as experi-

mental trials. Considering the fact that the new nor-

mothymic drugs, unlike typical neuroleptics, induce

side effects less frequently, it was important to exam-

ine any adverse effects resulting from combined ad-

ministration of OLA and CBZ, measured with the

chimney test (motor coordination).

Materials and Methods

Animals

Male Wistar rats (200 ± 20 g), 10–12 weeks of age,

purchased from a licensed breeder (license of the

Ministry of Agriculture, Warszawa, Poland) were

used in the study. The animals were housed under

standard laboratory conditions and 12 h light/dark cy-

cle with the lights on at 6 a.m. in a temperature con-

trolled room at 21 ± 2°C, humidity of 70%, with free

access to water and standard granulated food (if not

stated otherwise in the text). The rats were kept four

to a cage (30 × 30 × 20 cm). Each experimental and

control group consisted of 10 animals.

The experimental part of our research took into

consideration the welfare of the experimental animals.

Drugs

Sodium carboxymethylcellulose (CMC) PURE bpc

was purchased from Koch-Light Laboratories Ltd.

(London, England); OLA (Zyprexa) was synthesized

by Lilly Research Laboratories, and CBZ was obtained

from a local pharmacy (Polpharma, Stargard Szczeciñski

Pharmaceutical Factory, Poland). OLA (0.5 mg/kg)

was suspended in a 0.5% solution of CMC and admin-

istered ip 30 min before the test. CBZ (30 mg/kg) was

suspended in the CMC solution and administered ip 60

min before the test. OLA and CBZ were used at effec-

tive doses in tests described in the reports by

Nowakowska et al. [24, 26].

In the chronic experiments, OLA was administered

once a day, and CBZ twice a day for a period of 2

weeks. Each week, after one drug-free day to wash out

the remnants of the last dose, the test was performed af-

ter administering the usual dose of the drug. Both single

and chronic administration experiments were conducted

on the same animals. The controls were given only

CMC (2 ml/kg ip) according to same schedule.

The animal experiments were performed in accor-

dance with the Ministry of High Education Report of

1959 as well as the UNECO Declaration of Animals’
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Rights of 1978 (Paris). All procedures related to the

use of animals in these experiments were conducted

in line with ethical standards regarding experiments

on animals. The study protocol was approved by the

Local Ethical Commission for Research on Animals

in Poznañ.

Behavioral tests

Locomotor activity

Locomotor activity was measured in the study and

control groups using eight 20.5 × 28 × 21 cm wire

grid cages, each with two horizontal infrared photo-

cell beams along the long axis, 3 cm above the floor.

Photocell interruptions were recorded by electrome-

chanical counters in an adjacent room. After 30 min

of habituation to the novel cage, rats were treated with

CBZ and OLA, and then photocell activity was re-

corded at 10-min intervals for 1 h. This test provided

an index of basal locomotor activity of animals in

a familiar environment, necessary to indicate the pres-

ence of a central stimulant or sedating effects of the

drug used in the novelty test.

Forced swimming test – measurement of
immobility according to Porsolt et al. [27]

a) Pretest: 24 h before the experiments, the rats

were placed individually in Plexiglas cylinders (40 cm

high, 18 cm in diameter) containing water at 25°C up

to 17 cm height of the cylinder, and 15 min later they

were removed to a 30°C drying room for 30 min.

b) Test: The drugs were administered 24 h after the

pretest, and 30 min later the animals were placed once

again in the cylinders and immobility was measured

for 5 min. A rat was judged to be immobile when it re-

mained floating in the water, in an upright position,

making only very small movements necessary to keep

its head above water. The total duration of immobility

during 5 min was recorded by an observer who did

not know which treatment the rats had received.

c) After prolonged administration (7 or 14 days)

the drug action was tested as under b).

The water was changed after the observation of each rat.

Morris water maze test [21]

The apparatus was a circular basin (diameter = 180 cm,

height = 50 cm) filled with water (approximately

22–24°C) to the depth of 24 cm, with pieces of Styro-

foam hiding an escape platform (diameter = 8 cm)

placed 1 cm below the water surface (learning place,

invisible condition). Many extra-maze visual cues sur-

rounding the maze were available, and the observer

remained in the same location for each trial.

The rats were placed in the water close to and fac-

ing the midpoint section of the wall at one of four

equally spaced locations: North (N), East (E), South

(S) and West (W). The pool was divided into 4 quad-

rants: NW, NE, SE and SW. The rats were allowed to

swim freely until they found the platform on top of

which they could climb. If a rat failed to locate the

platform within 60 s it was placed on the platform

where it remained for 5 s. Each rat was submitted to

6 trials per day, and at each trial the starting position

was changed (starting on the N side, followed by E, S,

and W sides in that order). The inter-trial interval was

5 min between trials 1–3 and 4–6, and 10 min be-

tween trails 3 and 4. For the first 3 days of maze test-

ing, the submerged platform was placed in the NW

quadrant and then in the SE quadrant for the follow-

ing 2 days. After these 5 testing days, there was a pe-

riod of 7 days without any testing. On day 6, the rats

were retested with the platform located as on day 5.

On day 7 (one day later), the platform was lifted

above the water level and placed in the SW quadrant.

On the test day, each rat was subjected to a single

probe trial swim (6 trials). The total number of times

each rat crossed the probe target area and the time of

probe trial swim were recorded by the observer. The

time of each of the 6 trials was noted, and a mean

value for each rat was calculated. The same procedures

were followed in the chronic experiments (7 and 14

days).

Statistical analysis

The data are shown as the mean values ± SEM. The data

distribution pattern was not normal (unlike a Gaussian

function). Statistical analyses for the memory test and

antidepressant test were carried out using a nonpara-

metric ANOVA Kruskal-Wallis test for unpaired data

and ANOVA Friedman test for paired data. Statistical

significance was then tested in the post-hoc Dunn test.

Statistical analysis for locomotor activity was carried

out using the ANOVA Kruskall–Wallis test for un-

paired data and ANOVA Friedman test for paired

data, followed by the Mann–Whitney U-test.
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Results

Locomotor activity effects of CBZ and OLA

Locomotor activity results are shown in Table 1. Sin-

gle administration of CBZ at a dose of 30 mg/kg did not

modify the locomotor activity in rats, but after 7 and 14

days of treatment with CBZ, we observed a statisti-

cally significant decrease in locomotor activity. OLA

at a dose of 0.5 mg/kg in single administration and ad-

ministered for 7 and 14 days did not lead to locomotor

activity impairments compared to the control group.

Combined administration of both drugs did not de-

crease locomotor activity neither in single nor re-

peated administration compared to the control group

(Tab. 1). In combined administration of CBZ + OLA

(7 and 14 days), however, OLA would completely

prevent CBZ’s sedative effect (Tab. 1).

Immobility time

OLA at 0.5 mg/kg ip decreased the immobility time,

as shown in Table 2, after a single administration,

whereas CBZ at 30 mg/kg ip decreased the immobil-

ity time after 7 days of treatment; this effect did not

last through the following (14) days of CBZ admini-

stration. In the case of combined administration of

CBZ and OLA, both as a single dose and after a pro-

longed treatment for 7 days, a significant shortening

of immobility time was observed (Tab. 2).

Effects of CBZ and OLA on memory

Effect of acute and chronic treatment with CBZ and

OLA on spatial memory (the Morris water maze test)

in rats. Values of escape latencies

As shown in Table 3, after CBZ administration

(30 mg/kg) as a single dose, or OLA also as a single

dose (0.5 mg/kg ip) no changes of escape latencies

compared to the control group could be observed, but

after chronic treatment with CBZ or OLA (7 and 14

days) we observed a decrease in escape latencies,

which is a sign of memory improvement in the rats.

Combined administration of CBZ and OLA did not

improve memory in rats that received these drugs as

a single dose (vs. control group), whereas statistically

significant differences were be observed in the

chronic experiment (vs. control group) (Tab. 3).

Effect of acute and chronic treatment with CBZ

and OLA on the spatial memory (Morris water maze

test) in rats. Number of crossed quadrants

Single administration of CBZ and OLA, just like

their combined administration, did not change the pa-

rameter of crossed quadrants (Tab. 4) but after 7 and

14 days of administration of CBZ, OLA or their com-

bined administration significantly decreased the

number of crossed quadrants compared to the control

group, indicating improved performance (Tab. 4).
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Tab. 1. Effect of CBZ and OLA on locomotor activity of rats in photocell activity cages

Group

Activity counts/mean

Friedman
H [3.37]Single administration

(x ± SEM)

Chronic treatment

7 days (x ± SEM) 14 days (x ± SEM)

Control 0.5% CMC 0.5 ml/rat ip 104.4 ± 7.8 105.8 ± 3.2 116.9 ± 5.1 2.1

CBZ 30 mg/kg, ip 60 min before the test 95.4 ± 5.9 51.1 ± 4.3* 30.4 ± 5.4* 12.3

OLA 0,5 mg/kg, ip 30 min before the test 97.0 ± 4.5 101.2 ± 4.0 109.1 ± 5.8 2.6

CBZ 30 mg/kg, ip 60 min before the test
+ OLA 0.5 mg/kg, ip 30 min before the test

90.3 ± 4.8 112.3 ± 3.1+ 132.60 ± 11.8+ 5.6

Kruskal-Wallis H [3.37] 1.7 8.1 11.4

Number of housed animals = 10, * – significant difference p < 0.05 vs. control group, � – significant difference p < 0.05 vs. CBZ group
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Tab. 4. Effect of CBZ and OLA on spatial memory in rats (Morris water maze test). Number of crossed quadrants

Group

Quadrants
Friedman
H [3.37]Single administration

(x ± SEM)

Chronic treatment

7 days (x ± SEM) 14 days (x ± SEM)

Control 0.5% CMC 0.5 ml/rat ip 2.1 ± 0.4 1.6 ± 0.2 1.4 ± 0.2 1.7

CBZ 30 mg/kg, ip 60 min before the test 2.1 ± 0.3 1.1 ± 0.2* 0.8 ± 0.2* 6.3

OLA 0,5 mg/kg, ip 30 min before the test 2.4 ± 0.3 0.7 ± 0.1* 0.7 ± 0.2* 7.9

CBZ 30 mg/kg, ip 60 min before the test
+ OLA 0.5 mg/kg, ip 30 min before the test

1.9 ± 0.4 0.9 ± 0.2*° 0.9 ± 0.1* 7.6

Kruskal-Wallis H [3.37] 1.3 12.4 8.7

Number of housed animals = 10, * – significant difference p < 0.05 vs. control group, ° – significant difference p < 0.05 vs. OLA group

Tab. 3. Effect of CBZ and OLA on spatial memory in rats (Morris water maze test). Values of escape latencies

Group

Escape latencies (s)

Friedman
H [3.37]Single administration

(x ± SEM)

Chronic treatment

7 days (x ± SEM) 14 days (x ± SEM)

Control 0.5% CMC 0.5 ml/rat ip 10.5 ± 0.9 9.3 ± 0.6 8.3 ± 0.6 3.0

CBZ 30 mg/kg, ip 60 min before the test 10.3 ± 1.1 7.1 ± 0.7* 6.7 ± 0.8* 3.9

OLA 0,5 mg/kg, ip 30 min before the test 11.9 ± 1.2 6.6 ± 0.7* 6.8 ± 0.5* 6.1

CBZ 30 mg/kg, ip 60 min before the test
+ OLA 0.5 mg/kg, ip 30 min before the test

10.1 ± 1.0 5.8 ± 0.4*� 5.6 ± 0.4*�° 6.7

Kruskal-Wallis H [3.37] 1.4 10.9 9.2

Number of housed animals = 10, * – significant difference p < 0.05 vs. control group, � – significant difference p < 0.05 vs. CBZ group, ° – sig-
nificant difference p < 0.05 vs. OLA group

Tab. 2. Effect of CBZ and OLA on immobility time in rats

Group

IT – time (s)

Friedman
H [3.37]Single administration

(x ± SEM)

Chronic treatment

7 days (x ± SEM) 14 days (x ± SEM)

Control 0.5% CMC 0.5 ml/rat ip 243.2 ± 3.4 260.9 ± 4.8 249.8 ± 6.8 3.1

CBZ 30 mg/kg, ip 60 min before the test 245.2 ± 4.1 228.9 ± 4.2* 245.9 ± 5.9 3.9

OLA 0.5 mg/kg, ip 30 min before the test 213.4 ± 9.6* 267.9 ± 6.3 270.8 ± 2.4 6.1

CBZ 30 mg/kg, ip 60 min before the test
+ OLA 0.5 mg/kg, ip 30 min before the test

216.0 ± 2.5*+ 237.8 ± 9.6*° 251.6 ± 5.3° 6.8

Kruskal-Wallis H [3.37] 1.8 8.2 6.9

Number of housed animals = 10, * – significant difference p < 0.05 vs. control group, + – significantdifference p < 0.05 vs. CBZ group, ° – sig-
nificant difference p < 0.05 vs. OLA group



Discussion

Recent years have witnessed a real revolution in terms

of pharmacotherapy used to treat mental illnesses, in-

cluding bipolar disease. Bipolar affective disorders

have many forms, indicating that individual disease

stages feature various psychopathological states re-

quiring different therapeutic approaches [36]. In addi-

tion, many patients cannot tolerate the side effects as-

sociated with available medications [12]. One should

also bear in mind that monotherapy is often inade-

quate, thus polytherapy has become common [22].

Many clinical studies indicate that combined treat-

ment with a first generation normothymic drug (CBZ)

and second generation normothymic drug (OLA)

yields greater therapeutic efficacy in treating bipolar

affective disease than monotherapy with these drugs

[35]. The combination of CBZ and OLA is often used

in clinical practice in the management of mania [43].

Efficacy of antidepressant activity of OLA and

CBZ combination was the subject of many studies.

Nearly all reports confirm antidepressant effect of

OLA [24, 37] and CBZ [4, 26, 53, 54] both in humans

and animals. Among second generation neuroleptics,

the largest amount of data on effective preventive ac-

tion in bipolar affective disease available concerns

OLA [52]. For instance, it has been shown that OLA

added to lithium and valproate in combined therapy

shows a much better preventive effect compared to

each of these two drugs administered in monotherapy

[45]. It is worth emphasizing that OLA is currently

approved for long-term administration in bipolar af-

fective disease both in the United States and in

Europe [36].

Efficacy of the antidepressant activity in combined

administration of CBZ and OLA was also found in

this study. Combined single administration of CBZ

and OLA shows an antidepressant effect similar to

that of OLA alone; upon 7 days of combined admini-

stration of the two drugs the antidepressant effect

found was similar as with CBZ alone. Upon 14 days

of administration of the study drugs (CBZ or OLA) or

their combined administration, however, no antide-

pressant effect was observed.

It is very important that the combined administra-

tion of CBZ and OLA leads to an antidepressant ef-

fect, and mutual interactions between the study drugs

may be pharmacokinetic. It seems that the interac-

tions observed show no signs of synergy, or even ad-

ditivity. From the literature, it is possible that OLA

metabolism may be induced by CBZ [18], which may

lead to a reduced OLA concentration. CBZ is also

a substrate and inducer for some P450 cytochrome

isoenzymes [13, 16, 19] through which it affects

transformation of many drugs metabolized in the

liver, and at the same time, its metabolism depends on

the action of other substances. CBZ may, therefore,

catalyze metabolism and weaken the action of many

drugs administered simultaneously.

Immobility time of rats in the Porsolt test was

lower upon single combined administration of CBZ

and OLA and after 7 days of chronic administration.

This effect did not continue through the prolonged

(14-day) combined administration of the two drugs.

Our previous studies have shown OLA to have an

antidepressant effect administered at the same dose

(0.5 mg/kg) only upon single administration, as the

effect did not continue throughout the chronic admini-

stration [24], whereas CBZ administered at the dose

of 30 mg/kg would show an antidepressant effect only

upon 7 days of administration [26]. Our studies

clearly indicate that the use of CBZ and OLA in com-

bined administration lead to an antidepressant effect,

which substantiates concomitant use of these drugs in

the treatment of manic psychotic disorders [34–36].

The theory of using polytherapy in the treatment of

mental illnesses is confirmed by clinical studies on

long-term use of another atypical antipsychotic agent

(clozapine) combined with CBZ in particularly severe

cases of bipolar affective disease [8], although it

needs to be emphasized that the combination of CBZ

and clozapine is generally contraindicated because

CBZ and clozapine each produce hematologic side ef-

fects, and CBZ probably lowers the level of clozap-

ine, possibly more than it lowers the levels of tradi-

tional neuroleptics [12]. Thus, the combination of

CBZ and clozapine should not be considered safe [8].

On the other hand, our studies have shown no adverse

effects of combined administration of CBZ and OLA

on motor coordination in animals (results not shown)

or a sedative effect upon combined, single and re-

peated administration of the two drugs The lack of ad-

verse effects with combined administration of CBZ

and OLA is an additional advantage advocating the

use of this combination in clinical practice, even more

so that a sedative effect was observed with CBZ

monotherapy [26]. It is worth emphasizing that in the

chronic experience OLA would completely prevent

CBZ’s sedative effect, which may be related to auto-
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induction of microsomal enzymes of the P450 cyto-

chrome. T��� for CBZ is 36 h in humans and approxi-

mately 8–9 h in animals and, with chronic administra-

tion, was reduced to 16–24 h in humans [14, 39, 49].

It should be remembered that simultaneous applica-

tion of microsomal enzymes inducers additionally re-

duces t��� of the drug used [14, 49].

Cognitive processes play a vital role in our daily

life; therefore, an analysis of irregularities occurring

in the course of diseases and during the pharmaco-

therapy used is an important issue. Perception or

memory impairments resulting from a disease or

a poorly chosen pharmacotherapy may entirely ex-

clude the patient from social and professional life;

hence, there has been a continuous search for drugs

which would not only relieve the disease symptoms

but also have potentially minimal adverse effects on

cognitive functions [5, 6]. A number of studies have

shown that impairments of cognitive processes are an

inherent characteristic of mental illnesses [5, 6, 51].

In schizophrenia, attention and operating memory

processes are impaired [32] and the condition persists

in the acute stage of the disease but also once the psy-

chotic symptoms subside [30]. These deficits are one

of the key symptoms of schizophrenia, which is why

the medications used should not impair cognitive

functions [23]. Cognitive function disorders in CHAD

affect memory and learning and impair intelligence or

verbal fluency [3, 11]. Impairments of cognitive pro-

cesses may result from a depressed mood and low

self-esteem [23] of the treated patients.

There are a number of studies reporting a positive

effect of CBZ [1, 15, 26, 28, 41, 42, 48] and OLA [9,

25] on memory both in humans and animals. Our

studies [24, 26] have also shown repeated administra-

tion of CBZ or OLA alone to lead to memory im-

provements in animals in two distinct experiments.

The available references fail, however, to document

the effect of CBZ and OLA polytherapy on cognitive

functions in humans and animals.

Our studies have shown that repeated combined ad-

ministration of CBZ and OLA, similar to CBZ and

OLA alone, lead to a similar effect – memory im-

provement in animals. This effect may be strictly re-

lated to pharmacokinetic parameters, because, as

Sudha [41] reports, doses of 20 and 40 mg/kg CBZ ip

(plasma levels of 2.5 and 4.5 µg/ml, respectively) im-

proved the rats’ performances in the T-maze and pas-

sive avoidance tests, but the CBZ dose of 80 mg/kg,

ip (plasma level of 9 µg/ml) caused no change in

memory and learning, and made the rats drowsy

instead [41]. It is believed that central nervous system

side effects are frequent with CBZ concentrations

> 9 µg/ml [29] and may have an important role in

learning and memory. The same effect can most likely

be attributed to OLA.

Brain serotoninergic neurons are also involved in

learning and memory in rodents [10]. Cognitive func-

tion improvement in the course of treatment with

atypical drugs (including OLA), which distinguishes

them from traditional drugs, may result, for instance,

from this drug’s antagonistic effect on 5-HT��, 5-HT��

and 5-HT� receptors and the simultaneous stimulation

of 5-HT�� receptors or increased dopamine and ace-

tylcholine release in the prefrontal cortex and the hip-

pocampus [50]. On the other hand, spatial memory

improvement observed in rats upon chronic CBZ ad-

ministration is probably related to a reduced AChE

activity, which results in an increased acetylcholine

concentration in the central nervous system and thus

can lead to cognitive improvement [41]. Sudha [41]

also believes that an increased turnover of 5-HT and

dopamine in the hippocampus (the structure responsi-

ble for the memory function) may play a role in mem-

ory improvement. For certain, the memory improve-

ment effect observed in combined CBZ and OLA ad-

ministration may also correspond to the reduced

incidence of EPS in humans [46, 47] or catalepsy in

animals [24, 26].

Our studies confirm the reports of other authors

that the addition of CBZ to different types of antide-

pressants produces significant therapeutic effects in

the treatment of mood disorders [17, 40]. Similar ef-

fects are also observed in animal studies [2, 7, 31].

Thus, it can be assumed that co-administration of

OLA and CBZ can be useful for treating mental and

psychiatric diseases with memory function disorders.
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