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Abstract:

The present study was designed to investigate the central nervous system activity of 23 novel phenylpiperazine pyrrolidin-2-one de-

rivatives. These compounds had marked antiarrhythmic and hypotensive activities and revealed affinity for �1- and �2-adrenoce-

ptors. These effects may be related to their �-adrenolytic properties. We assessed their antidepressant-like effect in the forced

swimming test, influence of spontaneous locomotor activities and binding to 5-HT1A and 5-HT2 receptors. Our study demonstrated

the strong antidepressant-like activity of compound EP-65 in the forced swimming test. The effect of EP-65 was stronger than re-

sults obtained with the classical antidepressants imipramine and mianserin. Other compounds, EP-41, EP-42, EP-44, EP-47,

EP-48, EP-49, EP-50, EP-62, EP-66, EP-70, EP-75 and EP-76, showed significantly weaker activities in this test. Compound

EP-42 showed the strongest affinity for 5-HT1A (Ki = 24.5 nM), and compound EP-50 showed the strongest affinity for the 5-HT2

receptor (Ki = 109.1 nM). All tested compounds significantly suppressed the spontaneous locomotor activity of mice. Currently, it is

not possible to determine which mechanisms are involved in the witnessed antidepressant-like activity of novel phenylpiperazine

pyrrolidin-2-one derivatives.
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Introduction

The monoamine theory states that depression may be

due to reduced levels of monoamine or neuronal activity

in the brain based on primary pharmacological effects of

antidepressants. Most antidepressants exert important

actions on the metabolism of monoamine neurotransmit-

ters and their receptors, particularly norepinephrine and

serotonin. Apart from antidepressants such as tricyclic

antidepressants, selective serotonin reuptake inhibitors,

monoamine oxidase inhibitors, drugs with the receptor

activity, for example nefazodone, trazodone, mir-

tazapine and mianserin play an important role in the

therapy of the depression [12, 22].

It is widely accepted that cerebral �-adrenergic (es-

pecially �2) and serotonin receptors (especially 5-HT�

and 5-HT�) are involved in the depression and action of

atypical antidepressants [6, 34]. Drugs that have an-

tagonistic effects at 5-HT�� receptors may contribute to

antidepressant and anxiolytic activity [6, 8]. On the

other hand, drugs that have antagonistic effects at pre-

synaptic 5-HT� subtype autoreceptors and ��-adren-

olytics may contribute to enhanced neuronal release
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of serotonin or norepinephrine, respectively, which

initiates the antidepressant effect [12, 27].

Our earlier research has shown that pyrrolidin-2-

one derivatives with arylpiperazine have marked anti-

arrhythmic and hypotensive activities and revealed

affinity for ��- and ��-adrenoceptors. Antiarrhythmic

and hypotensive effects may be related to their �-

adrenolytic properties [17–19, 24]. Many studies

showed that arylpiperazine can condition affinity to

�-adrenoceptors; 5-HT��/5-HT�� receptors and com-

pounds with arylpiperazine had antidepressant-like

effects [1, 14, 15, 21, 26, 31, 35] or antipsychotic and

anxiolytic activity [10, 16, 32].

It is possible that new pyrrolidin-2-one derivatives

with arylpiperazine will have antidepressant activi-

ties. In this study, we assessed the antidepressant ef-

fect (in the forced swimming test) and sedation effect,

as well as the 5-HT�� and 5-HT� receptor binding of

23 pyrrolidin-2-one derivatives.

Materials and Methods

Animals

Experiments were carried out on male Albino-Swiss

mice (body weight 18–26 g). Animals were housed in

constant temperature facilities, exposed to 12:12 h

light-dark cycle and maintained on a standard pellet

diet and tap water given ad libitum. All procedures

were conducted according to the Animal Care and

Use Committee Guidelines and approved by the Ethi-

cal Committee of Jagiellonian University. Control and

experimental groups consisted of 6–8 animals each.

Drugs

The tested compounds (Fig. 1) were synthesized by

Katarzyna Kulig and Barbara Malawska in the De-
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Fig. 1. Schematic structure of MG-1 and new pyrrolidin-2-one derivatives



partment of Physicochemical Drug Analysis, Pharma-

ceutical Faculty, Jagiellonian University. The synthe-

ses of tested compounds were described in previous

papers [17–19, 24]. Imipramine (Imipraminum hydro-

chloricum, Polpharma, Poland), ritanserin and WAY-

100635 (Sigma) were dissolved in 0.9% sodium chlo-

ride. Mianserin (Organon) was suspended in 0.5%

methylcellulose (Loba-Chemie, Germany). The in-

vestigated compounds and reference drugs were ad-

ministered intraperitoneally.

5-HT1A receptor binding experiments

[�H]8-Hydroxy-2-(di-n-propylamino)-tetralin ([�H]8-

OH-DPAT, spec. act. 106 Ci/mmol, NEN Chemicals)

was used for labeling 5-HT�� receptors. The mem-

brane preparation and assay were carried out accord-

ingly as previously published [5, 25] with slight

modifications. Briefly, the cerebral cortex tissue was

homogenized in 20 vol. of 50 mM Tris-HCl buffer

(pH 7.7 at 25 C) using Ultra-Turrax� T 25 and was

then centrifuged at 32,000 × g for 10 min. The super-

natant fraction was discarded, and the pellet was re-

suspended in the same volume of Tris-HCl buffer fol-

lowed by centrifugation. Before the third centrifuga-

tion, samples were incubated at 37°C for 10 min. The

final pellet was resuspended in Tris-HCl buffer con-

taining 10 µM pargyline, 4 mM CaCl� and 0.1%

ascorbic acid. One milliliter of the tissue suspension

(9 mg of wet weight), 100 µl of 10 µM serotonin (for

unspecific binding), 100 µl of [�H]8-OH-DPAT and

100 µl of analyzed compound were incubated at 37°C

for 15 min. Incubation was followed by rapid vacuum

filtration through Whatman GF/B glass filters. The

suspension was then washed 3 times with 5 ml of

a cold buffer (50 mM Tris-HCl, pH 7.7) using a Bran-

del cell harvester. The final [�H]8-OH-DPAT concen-

tration was 1 nM, and the concentrations of the ana-

lyzed compounds ranged from 10��� to 10�� M.

5-HT2 receptor binding experiments

[�H]Ketanserin (spec. act. 60 Ci/mmol, NEN Chemi-

cals) was used for labeling 5-HT� receptors. The assay

was performed according to the method of Laysen et

al. [5, 20] with slight modifications. The cerebral cor-

tex tissue was homogenized in 20 vol. of 50 mM

Tris-HCl buffer (pH 7.7 at 25°C) and centrifuged at

32,000 × g for 20 min. The resulting pellet was resus-

pended in the same quantity of buffer, preincubated at

37°C for 10 min and centrifuged for 20 min. The final

pellet was resuspended in 50 vol. of the same buffer.

One milliliter of the tissue suspension, 100 µl of 1 µM

mianserin (displacer), 100 µl of [�H]ketanserin and

100 µl of the analyzed compound were incubated at

37°C for 20 min, followed by rapid vacuum filtration

through Whatman GF/B glass filters. The filtrate was

then washed three times with 5 ml of a cold Tris-HCl

buffer. The final [�H]ketanserin concentration was

0.6 nM, and the concentrations of analyzed com-

pounds ranged from 10��� to 10�� M.

Forced swimming test in mice

The forced swimming test experiments were carried

out according to the slightly modified method of Por-

solt et al. [2, 28]. Mice were dropped individually into

glass cylinders (height 25 cm, diameter 10 cm) filled

with water to a height of 10 cm (maintained at

23–25°C) and left there for 6 min. After an initial 2 min

period of vigorous activity, each animal assumed an

immobile posture. The total duration of immobility

was recorded during the final 4 min of the 6 min test-

ing period. Mice were judged to be immobile when

they remained floating passively in the water, making

only small movements to keep their heads above the

water. Imipramine and mianserin were used as refer-

ence compounds. The tested compounds and reference

drugs were given ip 45 min before the experiments.

Ritanserin (a 5HT� antagonist) and WAY 100635

(a 5HT�� antagonist) were administered ip 60 min be-

fore the test (dose: ritanserin – 4 mg/kg, WAY 100635

– 0.1 mg/kg)

Spontaneous locomotor activity

Spontaneous locomotor activity in mice was meas-

ured with circular photoresistor actometers (32 cm in

diameter). The investigated compounds were injected

ip at a dose range of 2.5–30 mg/kg. Thirty minutes af-

ter the injection of the investigated compounds, mice

were placed in actometers for 30 min. Each crossing

of the light beam was recorded automatically. The

number of impulses was noted after 20 min.

Statistical analysis

Data are expressed as the mean ± SEM and evaluated by

one-way analysis of variance (ANOVA) followed by the

Duncan test; p < 0.05 was considered significant.
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Results

5-HT1A and 5-HT2 receptors binding experiments

Table 1 shows the binding profiles (��, ��, 5-HT��,

5-HT� receptors) of all compounds and mianserin.

Compound EP-42 showed the strongest affinity for

the 5-HT�� receptor and had weak affinity for the

5-HT� receptor. On the other hand, compound EP-50

showed the strongest affinity for the 5-HT� receptor.

Results indicate that compounds EP-42, EP-43,

EP-44, EP-46 and EP-49 showed stronger affinity for

5-HT�� receptors than mianserin. Only compound

EP-50 had stronger affinity for the 5-HT� receptor

than mianserin (Tab. 1).

Forced swimming test in mice

In this test, thirteen compounds showed significant

activity: EP-41, EP-42, EP-44, EP-47, EP-48,

EP-49, EP-50, EP-62, EP-65, EP-66, EP-70, EP-75

and EP-76, (Tab. 2a, 2b).

The most potent effect was produced by compound

EP-65, which significantly reduced the immobility

time in this test at doses 2.5 mg/kg (by 32.2%), 5 mg/kg

(by 46.6%), 10 mg/kg (by 51.7%) and 20 mg/kg (by

31.2%) (Tab. 2b). The effect was stronger than the re-

sults obtained with classical antidepressants imi-

pramine, mianserin and reference compound MG-1,

(Tab. 3).

Compounds EP-41 and EP-47 significantly reduced

immobility time in the forced swimming test (by 14

and 23%, respectively) at 5 mg/kg doses; EP-76 was

affective at both doses (5 and 10 mg/kg) by

29.5–25.3%. Compounds EP-49, EP-62, EP-70 and

EP-75 were significantly active only at 10 mg/kg

doses (by 16.7, 26.1, 27.4 and 24.9%, respectively)

(Tab. 2a, 2b).

Compounds EP-42, EP-44, EP-48 and EP-66 sig-

nificantly reduced the immobility time at 20 mg/kg

doses (by 21.1, 21.1, 40.4 and 25.7%, respectively),

and compound EP-50 was effective at doses of 20 and

30 mg/kg by 30 and 24%, respectively (Tab. 2a, 2b).

Classical antidepressant imipramine and mianserin

were significantly active in this test at doses of 10 and

20 mg/kg (Tab. 3).

Effect of combined administration of EP-65

and ritanserin or WAY100635 in the forced

swimming test

The effect of compound EP-65 on the total duration

of the immobility time and the effect of pre-treatment

with ritanserin or WAY100635 on the effect produced

in the forced swimming test in mice is shown in

Figure 2. EP-65 at a 10 mg/kg dose significantly re-

duced (by 51.7%) the immobility time in the forced

swimming test in mice. Administration of ritanserin

or WAY100635 had no effect on the immobility time

(data not shown), although it antagonized the effect

elicited by EP-65 in this test (by 39.5% and 29.8, re-

spectively) (Fig. 2).
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Tab. 1. Affinity towards 5HT
��

and 5HT
�

serotonin receptors in the rat
cerebral cortex

Compound [3H]8-hydroxy-DPAT 5 HT1A [3H]ketanserin 5 HT2

Ki (nM)

EP-40 163.5 ± 24.1 3880 ± 1250

EP-41 169.2 ± 34.7 580 ± 100

EP-42 24.5 ± 6.1 1850 ± 800

EP-43 91.1 ± 9.4 3090 ± 1300

EP-44 48.5 ± 12.8 440 ± 50

EP-45 419.9 ± 13.7 744.5 ± 59.6

EP-46 55.3 ± 10.1 680 ± 30

EP-47 133.4 ± 9.3 290 ± 10

EP-48 597.1 ± 40.2 491.1 ± 47.7

EP-49 90.2 ± 7.8 180 ± 10

EP-50 1100 ± 456 109.1 ± 13.3

EP-61 18800 ± 3700 37400 ± 1300

EP-62 11600 ± 1800 7800 ± 1900

EP-63 56900 ± 13000 1100 ± 500

EP-64 14900 ± 2700 3600 ± 1000

EP-65 1100 ± 400 350 ± 20

EP-66 439.4 ± 1.2 3100 ± 900

EP-70 435.7 ± 51.2 5800 ± 1600

EP-73 48300 51300

EP-74 22400 14600

EP-75 53200 15300

EP-76 12500 5800

MG-1 2500 ± 1500 13530 ± 2750

Mianserin [22] 97 121
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Tab. 2a. Effect of tested compounds on the total duration of immobil-
ity in the forced swimming test (Porsolt test) and influence on sponta-
neous locomotor activity of mice

Compound Dose
(mg/kg)

Reduced immobility
time in Porsolt test

± SEM (%)

Inhibition of
locomotor activity

± SEM (%)

EP-40 10
20
30

not active 28 ± 15.2*
45 ± 26***
65 ± 16.1****

EP-41 2.5
5

10
30

0
14 ± 5.9*
10 ± 17.3

0

2 ± 9.5
11 ± 8.2
30 ± 16.4**
63 ± 18.3***

EP-42 10
20
30

0
21 ± 11.4*

3 ± 4

0
20 ± 18.8
26 ± 12*

EP-43 5
10
20

not active 31 ± 17.5***
57 ± 16****
67 ± 15.5****

EP-44 10
20
30

0
21 ± 10.7*

0

20 ± 11.1
20 ± 25.9
38 ± 12.5*

EP-45 5
10
20

not active 20 ± 10.2
39 ± 13.5***
48 ± 11.5****

EP-46 5
10
20

not active 20 ± 8.6
50 ± 19.8****
59 ± 12.5****

EP-47 2.5
5

10
20

0
23 ± 5.3***

8 ± 6.7
7 ± 7.5

–
13 ± 11.9
52 ± 10.1****
49 ± 14.8****

EP-48 10
20
30

11 ± 3.9
40 ± 14.2***
10 ± 4.7

0
47 ± 12.1***
67 ± 8.1****

EP-49 5
10
20

0
17 ± 8.5*

0

9 ± 11
36 ± 19.1***
64 ± 3.1****

EP-50 5
10
20
30

1 ± 10.4
11 ± 6.9
30 ± 4.5**
25 ± 11.9*

13 ± 12.1
12 ± 8
24 ± 5.9
40 ± 18***

EP-61 5
10
20

not active 7 ± 5.7
28 ± 6.9*
48 ± 10.7**

Data are presented as the means ± SEM of 6–8 mice per group (in
percent of control). Results were analyzed by one-way ANOVA fol-
lowed by Duncan test. * p < 0.05; ** p < 0.02; *** p < 0.01; **** p <
0.001 vs. respective control

Tab. 2b. Effect of tested compounds on the total duration of immobil-
ity in the forced swimming test (Porsolt test) and influence on sponta-
neous locomotor activity of mice

Compound Dose
(mg/kg)

Reduced immobility
time in Porsolt test ±

SEM (%)

Inhibition of
locomotor activity

± SEM (%)

EP-62 2.5
5

10
20

14 ± 13.3
21 ± 10.6
26 ± 10.4*

0

0
5 ± 8.1

26 ± 5.5*
47 ± 11.4***

EP-63 5
10
20
30

not active 6 ± 7.7
28 ± 9.6
32 ± 8.5*
50 ± 10.5***

EP-64 5
10
20

not active 14 ± 8.1
31 ± 13.5*
44 ± 11.9**

EP-65 2.5
5

10
20
30

32 ± 19.8*
47 ± 22.8***
52 ± 8***
31 ± 16.2*

0

5 ± 3.1
7 ± 5.9

23 ± 4.5*
29 ± 5.9**
51 ± 15.7***

EP-66 5
10
20
30

13 ± 8.7
21 ± 11.2
26 ± 13.6*

3 ± 8.7

5 ± 5.6
21 ± 4.6*
24 ± 6.3*
41 ± 7.8***

EP-70 5
10
20
30

21 ± 9
27 ± 11,5*
16 ± 12.5

6 ± 11.9

4 ± 2.8
7 ± 3.1

25 ± 7.7*
32 ± 4.6**

EP-73 5
10
20
30

not active 5 ± 7.2
14 ± 8.2
30 ± 8.6*
42 ± 8.6**

EP-74 5
10
20
30

not active 5 ± 5.6
24 ± 4.7*
37 ± 11.1**
49 ± 11.4***

EP-75 5
10
20

14 ± 8.5
25 ± 8.3*
17 ± 17.6

5 ± 9.9
10 ± 8.7
34 ± 7.5*

EP-76 2.5
5

10
20

18 ± 19.2
29 ± 10.6**
25 ± 10*

7 ± 12.7

–
8 ± 7.4
8 ± 4.3

36 ± 9**

Data are presented as the means ± SEM of 6–8 mice per group (in
percent of control). Results were analyzed by one-way ANOVA fol-
lowed by Duncan test. * p< 0.05; ** p < 0.02; *** p < 0.01; **** p <
0.001 vs. respective control



Spontaneous locomotor activity

All compounds tested significantly suppressed the

spontaneous locomotor activity of mice.

The most potent effect was produced by compound

EP-43, which significantly decreased spontaneous lo-

comotor activity at a dose of 5 mg/kg (by 30.8%) and

at doses of 10–20 mg/kg (by 57.4–66.9%) (Tab. 2a).

Compounds EP-40, EP-41, EP-45, EP-46, EP-47,

EP-49, EP-61, EP-62, EP-64, EP-65, EP-66 and EP-

74 significantly suppressed the spontaneous locomotor

activity at doses of 10 mg/kg, and compounds EP-48,

EP-63, EP-70, EP-73, EP-75, EP-76 and MG-1 sup-

pressed activity of mice at doses of 20 mg/kg (Tab 2a,

2b and 3). Compounds EP-42, EP-44 and EP-50 were

significantly active in this test after administration ip at

doses of 30 mg/kg (Tab. 2a).

Discussion

The present study demonstrated the potent anti-

depressant-like activities of several phenylpiperazine

pyrrolidin-2-one derivatives in the forced swimming

test in mice. The forced swimming test is widely used

as a reliable animal model of depression to screen

new antidepressants [9, 29]. Most conventional anti-

depressant drugs act via distinct mechanisms, includ-

ing serotoninergic, noradrenergic and/or dopaminer-

gic systems to increase serotonin, norepinephrine and

dopamine synaptic availability, as evidenced by the

forced swimming test [27, 30].

The accepted phenylpiperazine antidepressants ne-

fazodone and trazodone have weak inhibitory actions

on serotonin transports, and nefazodone may have

a minor effect on norepinephrine transport [12]. Addi-

tionally, both drugs may inhibit presynaptic 5-HT�

subtype autoreceptors to enhance neuronal release of

serotonin and exert at least a partial agonist effect on

postsynaptic 5-HT� receptors. Nefazodone also has

a significant direct antagonistic effect on 5-HT�� re-

ceptors that may contribute to antidepressant and anx-

iolytic activity [12, 13]. Trazodone also blocks cere-

bral ��-adrenergic and H�-histamine receptors, possi-

bly contributing to its tendency to induce priapism

and sedation, respectively [12, 13].

Mirtazapine and mianserin are structural analogs of

5-HT with potent antagonistic effects at several post-

synaptic 5-HT receptor types (including 5-HT��,

5-HT��, and 5-HT� receptors); they can lead to gradual

down-regulation of 5-HT�� receptors. These drugs limit

the effectiveness of inhibitory ��-adrenergic heterore-

ceptors on serotonergic neurons as well as inhibitory

�� autoreceptors and 5-HT�� heteroreceptors on nora-

drenergic neurons [11, 12]. These effects may en-

hance the release of amines and contribute to the anti-

depressant effects of these drugs [12]. Trazodone and

mirtazapine are not active in the forced swim test [2,
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Fig. 2. Effect of EP-65 and pretreatment with ritanserin (4 mg/kg) or
WAY 100635 (0.1 mg/kg) on immobility time in the forced swim test

Tab. 3. Effect of reference compounds MG-1, imipramine and mian-
serin on the total duration of immobility in the forced swimming test
and influence on spontaneous locomotor activity of mice

Compound Dose
(mg/kg)

Reduced immobility time
(%) in Porsolt test ±

SEM (%)

% Inhibition of
locomotor activity

± SEM (%)

MG-1 5 0 5 ± 5

10 11 ± 8.3 21 ± 6.3

20 8 ± 9.6 29 ± 3.9**

Imipramine 5 15 ± 9.2 –

10 34 ± 10.2** –

20 49 ± 18.1**** –

Mianserin 5 13 ± 5.9 1 ± 8

10 22 ± 10.7* 6 ± 5.8

20 36 ± 9.5*** 18 ± 10.9

Data are presented as the means ± SEM of 6–8 mice per group. Re-
sults were analyzed by one-way ANOVA followed by Duncan test.
* p < 0.05; ** p < 0.02; *** p < 0.01; **** p < 0.001 vs. respective control



11]. In contrast, mianserin is active in the forced swim

test [4, 23, 33, 34].

In our study, the most potent effect observed in the

forced swimming test was produced by compound

EP-65. The effect was stronger than the results ob-

tained with classic antidepressants, such as imi-

pramine and mianserin. This compound had affinities

for �-receptors (K�: �� = 114.6 nM, �� = 142.8 nM)

and 5-HT� receptors (K� = 350 nM) and a weak affin-

ity for 5-HT�� receptors. Recent preclinical and clini-

cal studies have reported a key role for 5-HT� recep-

tors in the pathology of depression as well as the ac-

tion of many antidepressants [3, 7, 8]. Ritanserin and

WAY 100635 partially antagonized the antidepres-

sant-like activity of EP-65. These results indicate the

participation of the serotoninergic system in the

antidepressant-like mechanism of action of EP-65. In

our earlier studies, this compound antagonized the re-

sponse (increase blood pressure) elicited by epineph-

rine, norepinephrine and methoxamine [18, 19]. This

is evidence that EP-65 has �-adrenolytic properties. It

is possible that EP-65 blocks ��-adrenergic heterore-

ceptors on serotonergic neurons and �� autoreceptors

on noradrenergic neurons, thereby leading to its

antidepressant-like activity. At this stage, however,

further experiments are needed to elucidate the exact

mechanism of action of compound EP-65.

Compounds EP-41, EP-42, EP-44, EP-47, EP-48,

EP-49, EP-50, EP-62, EP-66, EP-70, EP-75 and

EP-76 showed weak activities in the forced swim-

ming test, but they exhibited �-adrenolytic properties

[17–19] and stronger affinities for 5-HT�� and 5-HT�

receptors. All tested compounds significantly sup-

pressed spontaneous locomotor activity in mice. The

sedative effects of these compounds likely result from

the �-adrenolytic properties of 5-HT�� and 5-HT� re-

ceptors, but this needs further research.

In conclusion, preliminary experiments demon-

strated that these novel arylpiperazine pyrrolidin-2-

one derivatives showed antidepressant-like activities.

Many studies showed that compounds with affinity

for 5-HT�� or 5-HT�� receptors have been shown to

decrease immobility in the forced swimming test [1,

14, 15, 21, 26, 31, 35]. Our study demonstrated the

strong antidepressant-like activity of compound EP-

65, for which the effect was stronger than the results

obtained with the classic antidepressants imipramine

and mianserin.
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