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Abstract:

Caffeine (1,3,7-trimethylxanthine) is the most commonly ingested stimulant in the world. The daily consumption of this methylxan-
thine in coffee, tea and soft drinks is approximately 200 mg per person, which yields a pharmacologically active blood concentration.
Experimental data indicate that caffeine may either lower the convulsive threshold in experimental models of epilepsy or induce sei-
zure activity in doses over 400 mg/kg in rodents. Interestingly, animal data have demonstrated that caffeine, at doses far below its
convulsive potential, diminishes the protective effects of conventional antiepileptic drugs (AEDs – carbamazepine, phenobarbital,
phenytoin, valproate) and the newer AED, topiramate against electroconvulsions in mice. However, in contrast to these AEDs, caf-
feine did not impair the anticonvulsant efficacy of other newer AEDs, lamotrigine, tiagabine, and oxcarbazepine in this experimental
model of epileptic seizure. Although limited, the clinical data generally confirm the experimental findings, suggesting increased sei-
zure frequency in epileptic patients who began ingesting caffeine in high quantities. Thus far, no analysis has been performed in epi-
leptic patients to determine whether the hazardous effects of caffeine are dependent upon individual antiepileptic treatments. These
data clearly indicate that methylxanthines should be avoided in epileptic patients.
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Abbreviations: AEDs – antiepileptic drugs, CBZ – carba-
mazepine, CGS 15943A – 5-amino-9-chloro-2-(2-furyl)-1,2,4-
triazolo[1,5-c]quinazoline, CGS 21680 – 2-[4-(2-carboxyethyl)-
phenylamino]-5’-N-ethylcarboxamidoadenosine, CNS – central
nervous system, GBP – gabapentin, GPCR – G-protein coupled
receptor, IB-MECA – N�-(3-iodobenzyl)-5’-N-methylcarbox-
amidoadenosine, LTG – lamotrigine, MES – maximal electro-
shock, MX(s) – methylxanthine(s), OXC – oxcarbazepine, PB –
phenobarbital, PHT– phenytoin, TGB – tiagabine, TPM – topi-
ramate, VPA – valproate

Introduction

Caffeine (1,3,7-trimethylxanthine), which belongs to
the group of purine alkaloids, is the most commonly
and widely ingested stimulant. Caffeine is found in
beverages such as coffee, tea, and many soft drinks as
well as in chocolate products and desiccated coconut.
It is also present in a variety of analgesics, appetite
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stimulants, and some antiviral drugs [2, 28, 31, 44].
Estimates in North America show that 90% of the
population consumes caffeine-containing beverages.
The daily consumption of this methylxanthine (MX)
is, on average, 200 mg per person, which produces
pharmacologically active blood concentrations [2].

The history of caffeine is closely associated with
the history of coffee. Its name was derived from the
Arabian word “gahwa”, which means “excising tired-
ness”. The stimulatory effects of coffee on the central
nervous system were discovered in the XVII century
[47]. The first chemical analysis of coffee was made in
1685 by P.S. Dufour, who discovered that coffee con-
tained the bitter alkaloid caffeine [47]. The content of
caffeine in a cup of coffee varies from 75 to 150 mg, de-
pending on how the coffee is prepared and brewed [50].

Chronic caffeine ingestion may result in physical
dependence and tolerance to its central effects [2, 44].
One of the most dangerous complications of caffeine
overdose is seizure activity. Caffeine may either lower
the convulsive threshold in experimental models of
epilepsy or induce seizures in rodents when adminis-
tered in doses over 400 mg/kg [10, 11, 13, 16].

The inhibitory role of adenosine in the control of
seizure activity has also been well characterized [18,
41]. Among adenosine receptors, four types have al-
ready been distinguished: A�, A��, A��, and A�. All of
them are coupled to G-proteins, and adenosine is their
endogenous ligand [30, 35]. A� receptors are found in
many tissues and organs. The greatest concentrations
of A� receptors are found in the central nervous system
(CNS), especially in the human cortex, hippocampus,
cerebellum, brain stem, and spinal cord [51]. They are
also widely distributed in the immune system [35]. The
A� receptor is a G���-coupled G-protein coupled recep-
tor (GPCR); its activation suppresses adenylyl cyclase
causing a decrease in cAMP (a secondary messenger).
The consequences of central A� receptor activation are
sedation, motor activity depression, anxiolytic, and an-
ticonvulsant effects [36].

In contrast, the A� receptor is a G�-coupled GPCR;
its stimulation results in the activation of adenylyl cy-
clase and causes the release of the neurotransmitters
acetylcholine, noradrenaline, dopamine, and gluta-
mate [20, 49]. Therefore, these receptors mediate ex-
citatory neurotransmission in the CNS. Brain distribu-
tion of A�� receptors, which have a high affinity for
adenosine, is mainly restricted to the dopamine-rich
areas of the brain, such as the striatum [24]. A� adeno-
sine receptors are G	���-coupled GPCRs. These recep-
tors have a significantly lower affinity for adenosine
that the A� and A�� subtypes [6].

Although A� adenosine receptor-mediated events
are associated with the anticonvulsant effects of their
respective ligands, which may be injected peripher-
ally or locally into the brain, the role of the remaining
receptor subtypes in many experimental models of
epileptic seizure remains unclear [21, 46, 53–55].
Some data indicate that A�� adenosine receptor ago-
nists or antagonists, given locally into the piriform
cortex, did not significantly modulate .amygdala-
kindled seizures in rats [46]. In contrast, results re-
ported by Zeraati et al. [55] provide evidence that an
A�� receptor agonist, administered into the CA� hip-
pocampal field, produced a clear proconvulsive effect,
prolonging afterdischarge in piriform cortex-kindled
rats. However, in audiogenic seizures in DBA/2 mice,
the A� receptor agonist 2-[4-(2-carboxyethyl)-phe-
nylamino]-5’-N-ethylcarboxamidoadenosine (CGS 21680)
suppressed seizure activity following its peripheral
administration [22]. In the same experimental model,
N
-(3-iodobenzyl)-5’-N-methylcarboxamidoadenosine
(IB-MECA; an A� adenosine receptor agonist) was in-
effective; in contrast, Von Lubitz et al. [54] have
shown that this agonist protected mice against pentetra-
zole- or N-methyl-D-aspartate-induced convulsions.
However, these authors consider IB-MECA-produced
arteriolar constriction and hypotension as probable
factors contributing to the final anticonvulsant effect,
which may be of a pharmacokinetic nature.

Caffeine, a nonselective antagonist of adenosine
receptors [48], has been documented to produce sei-
zures per se [10, 11, 13] and exert proconvulsive ef-
fects in vitro [33]. Specifically, caffeine significantly
prolonged afterdischarges following cortical stimula-
tion in rats [33]. Also, when given at 10–20 mg/kg for
postnatal days 7–11, caffeine shortened the latency to
pentetrazole (40 mg/kg)-induced rhythmic EEG activ-
ity and extended its duration in 18-day-old rats. How-
ever, some anticonvulsant effects of caffeine were
noted when pentetrazole was given at 20 mg/kg [52].
When analyzing the epileptogenic effects of caffeine
and other MXs in hippocampal slices, Moraidis and
Bingman [40] have determined that this specific ef-
fect of MXs is correlated with their affinities to A�

adenosine receptors. Other data also support the con-
clusion that the proconvulsive effects of MXs are
mainly due to their antagonism of adenosine A� recep-
tors [1, 22]. Caffeine is a convulsant agent in mice,
and its CD�� (50% convulsant dose) is approximately
400 mg/kg [13]. The convulsive potential of another
MX, theophylline, has also been confirmed in asth-
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matic patients who were administered high doses of
this drug during intensive treatment of status asth-
maticus [56]. It seems clear that proconvulsive and/or
convulsive agents are capable of reducing the anticon-
vulsant potential of antiepileptic drugs (AEDs); how-
ever, the problem is not that simple. For instance, the
GABA� receptor antagonist, bicuculline, is a potent
convulsant, but it is completely incapable of affecting
the protective effects of AEDs against maximal elec-
troshock (MES)-induced seizures in mice [14]. This
indicates that a hazardous interaction of a drug with
antiepileptic treatment cannot be predicted from its
convulsant potential. Consequently, a series of experi-
ments were conducted to determine whether caffeine
bears an untoward capacity to reduce the protective
potential of AEDs. Certainly, any negative outcomes
derived from combinations of caffeine with antiepi-
leptic drugs would be of utmost clinical importance.

Influence of caffeine on the protective

activity of AEDs

Numerous studies have demonstrated that caffeine, in
relatively low doses, diminished the protective effects
of classic AEDs in two models of experimental epi-
lepsy: electroshock- and pentylenetetrazole-induced
convulsions [13, 18, 25, 26, 31, 38]. Another MX,
aminophylline (theophylline� × ethylenediamine) also
considerably reduced the convulsive potential of phe-
nobarbital (PB) against amygdala-kindled seizures
[17]. According to Löscher and Schmidt [37], these
models mimic human generalized tonic-clonic, myo-
clonic, and partial complex seizures. The effects of
caffeine on the anticonvulsant activity of classic
AEDs [phenytoin (PHT), PB, carbamazepine (CBZ),
and valproate (VPA)] against MES-induced convul-
sions in mice were studied, both after acute and
chronic exposure to caffeine, to determine whether
the possible hazardous influence of caffeine was sub-
ject to tolerance. The data have clearly shown that
acute caffeine administration (in doses of 23.1 and
46.2 mg/kg, equivalent to 25 and 50 mg/kg of amino-
phylline, respectively) produced a significant de-
crease in the protective potency of these AEDs [13,
25, 26]. The most sensitive AED to caffeine was PB;
its protective activity was significantly reduced by
caffeine at 11.55 mg/kg. Moreover, no tolerance to

this untoward effect of caffeine has been observed. In
fact, following 15 days of caffeine administration to
mice in the previously specified doses, the protective
efficacy of PHT was reduced similarly to acute caf-
feine. However, this was not the case with CBZ, PB,
or VPA, whose protection was even more signifi-
cantly reduced when compared with acute caffeine
administration [25, 26].

The influence of caffeine upon the anticonvulsant
activity of classic AEDs has also been studied in rats
in the MES test. The results indicate that caffeine, at
a relatively high dose of 200 mg/kg, reduced the pro-
tective potency of PHT, PB, and diazepam while the
potency of VPA remained unchanged [34]. These
authors, however, measured the final effects of the
ED��� of the tested AEDs in combination with caf-
feine. Also, there were no pharmacokinetic studies
evaluating possible pharmacokinetic interactions be-
tween caffeine and AEDs [34].

In addition to the chronic administration of caffeine,
another set of experiments were conducted. After two
weeks of daily injections, caffeine was withdrawn for
24 h, and a challenge dose of caffeine was given. This
procedure resulted in the most prominent hazardous ef-
fects of caffeine toward classic AEDs [25, 26].

At present, a number of newer AEDs, sharing simi-
lar anticonvulsant efficacy with classical drugs but in-
ducing fewer adverse effects and possessing more
predictable pharmacokinetics [12], are available. It
would be interesting to know whether caffeine is able
to affect their protective activity as in the case of clas-
sic AEDs. The newer AED, topiramate (TPM), was
also sensitive to caffeine administered acutely at
doses of 23.1 and 46.2 mg/kg. Caffeine produced sig-
nificant increases in its respective ED�� values against
MES-induced convulsions in mice [8]. The same was
true for gabapentin (200 mg/kg), whose anticonvul-
sant activity (an increased electroconvulsive threshold
in mice) was reduced by both acute and chronic caf-
feine at 46.2 mg/kg [8]. Low interaction potential has
been shown by felbamate, a newer AED used rarely
due to its considerable adverse potential, resulting
from an increased risk of inducing aplastic anemia
[12]. Its anticonvulsant activity was significantly re-
duced by caffeine at a high dose of 161.7 mg/kg [27].
Strikingly, neither acute nor chronic caffeine (up to
46.2 mg/kg) affected the protection offered by lamo-
trigine (LTG) or oxcarbazepine (OXC) against MES-
induced convulsions in mice [9]. A summary of the
interactions of selected AEDs with caffeine in the
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MES test may be found in Table 1. Also, acute or chronic
caffeine administered in the previously described
dose range did not significantly affect the electrocon-
vulsive threshold associated with tiagabine (TGB; 4
and 6 mg/kg) [9]. Caffeine (up to 46.2 mg/kg), given
acutely or chronically, did not significantly modify
neurotoxicity of LTG, OXC, or TGB evaluated in the
chimney test (quantifying an impairment of motor co-
ordination) [9]. Only in the case of TGB (4 mg/kg)
was a pharmacokinetic interaction observed; chronic
caffeine was found to raise its total plasma concentra-
tion [9].

The question arises whether this undesired interac-
tion of caffeine with classic AEDs is restricted to
models of electroconvulsion in rodents. The available
experimental data seem to extend the observations de-
rived from electroconvulsions to those observed in
pentetrazole-induced clonic seizures in rodents. Caf-
feine (200 mg/kg) has been found to reverse the anti-
convulsant action of diazepam (0.5 mg/kg) in mice.
However, no pharmacokinetic verification of this ef-
fect was conducted [29]. The same high dose of caf-
feine has also been able to reduce the protection by di-
azepam and PB although it was ineffective with re-
spect to VPA and ethosuximide in rats. Again, no
pharmacokinetic studies were performed [34]. Ac-

cording to £uszczki et al. [38], acute caffeine at 46.2
and 69.3 mg/kg did weaken the anticonvulsant po-
tency of ethosuximide; however, a dose of 92.4 mg/kg
was unable to exert a significant influence upon the
protection by clonazepam, PB, and VPA.

Clinical evidence

Clinical data are scant and primarily limited to case
reports. Kaufman and Sachdeo [32] provide evidence
from a patient with a 36-year duration of mixed epi-
lepsy consisting of tonic-clonic, absence, atonic and
myoclonic seizures satisfactorily controlled with two
AEDs. In spite of therapeutic serum AED concentra-
tions and no concurrent diseases, there was a sudden
increase in seizure frequency and a change to newer
AEDs was considered. After approximately 2 months,
it was discovered that the patient had started drinking
caffeinated beverages, and a change to decaffeinated
soft drinks would have almost immediately returned
his seizure frequency to baseline without having to
switch to other AEDs [32]. Another example de-
scribes a patient who had never achieved a seizure-
free status and experienced approximately five simple
seizures per day and one complex partial seizure
a week [4]. The patient used to drink a large amount
of coffee, up to 10 cups (0.25 l each) daily, but due to
nervousness, he quit this habit. Strikingly, within
a week there was a considerable reduction in his sei-
zure frequency to one partial seizure a day without
complex partial seizures [4]. Out of 78 coffee drinkers
with epilepsy, 71 found no association between their
drinking habit and seizure frequency [3]. However, in
7 heavy coffee users (more than 4 cups of coffee
daily) quitting this habit restored their seizure fre-
quency to baseline without any modification of the
antiepileptic treatment [3].

Conclusions

The experiments listed above clearly demonstrate
a close association between caffeine and seizure ac-
tivity. The data show a caffeine-induced decrease in
the convulsive threshold, especially in chemically in-
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Tab. 1. Influence of acute or chronic caffeine upon the anticonvulsant
activity of selected antiepileptic drugs against maximal electro-
shock-induced convulsions in mice [9, 13, 24, 26]

Antiepileptic drug Caffeine (mg/kg)

11.55 23.1 46.2

Phenobarbital � (��) �� (��) ��� (NT)

Phenytoin � (0) � (0) �� (��)

Carbamazepine 0 (�) � (��) �� (NT)

Valproate 0 (0) � (�) � (�)

Lamotrigine NT 0 (0) 0 (0)

Topiramate 0 (0) �� (��) ��� (���)

Oxcarbazepine NT 0 (0) 0 (0)

Caffeine and antiepileptic drugs were injected intraperitoneally: caf-
feine 30 min, phenytoin and phenobarbital 120 min, carbamazepine
and topiramate 60 min, and valproate 30 min before maximal electro-
shock test. 0 – no significant increase in the respective ED�� (the
dose necessary to block the hindlimb tonic-extensor component of
the maximal electroshock-induced seizures in 50% of the examined
animals) value vs. the control group; � – at least a 25% increase re-
flecting a reduction in the protective activity of antiepileptic drugs;
�� – at least a 50% increase; ��� – at least a 90% increase; (...) –
chronic caffeine; NT – not tested



duced seizures [10, 11]. The threshold for electrocon-
vulsions is unaffected by caffeine [13]. Caffeine has
been also documented to reduce the protective activ-
ity of a considerable number of classic and newer
AEDs against MES- or pentetrazole-induced convul-
sions in rodents. Because A� adenosine receptor-
mediated events are involved in the modulation of sei-
zures, the question arises whether the hazardous influ-
ence of caffeine on the anticonvulsant effects of vari-
ous AEDs is due to its mechanism of action at A�

adenosine receptors. This seems unlikely, especially
with respect to electroconvulsions. This assumption is
based on a study evaluating the effect of the nonxan-
thine adenosine antagonist, 5-amino-9-chloro-2-(2-
furyl)-1,2,4-triazolo[1,5-c]quinazoline (CGS 15943A),
on the protection offered by classic AEDs against
MES-induced convulsions in mice [15]. CGS 15943A
had no effect on the anticonvulsant activity of classic
AEDs except for PHT; therefore, in this particular
case, the involvement of A� adenosine receptors is
likely. However, the involvement of A� adenosine re-
ceptors may be taken into consideration with respect
to the newer AED, TPM and its interaction with caf-
feine. Nevertheless, the interaction between AEDs and
caffeine is of CNS origin because 8-(p-sulfophenyl)-
theophylline (a theophylline derivative unable to
cross the blood-brain barrier), in doses equivalent to
aminophylline (50 mg/kg), did not modify the protec-
tive action of PB, PHT, or VPA against MES [5].

If A� adenosine receptors are not generally associ-
ated with the hazardous interaction between caffeine
and AEDs, other possible mechanisms of action must
be considered. For example, one possible mechanism
may involve the caffeine-dependent release of cal-
cium ions from the endoplasmic reticulum [27, 39,
43], an effect mediated by ryanodine receptors [7]. In-
terestingly, clonazepam, CBZ, and VPA antagonized
caffeine-induced epileptiform activity in rat hippo-
campal slices due to the effect of caffeine on the rya-
nodine receptors [39]. This finding excludes the re-
lease of calcium ions from the endoplasmic reticulum
as a key factor for the untoward interaction of caffeine
with AEDs in the MES test. However, this mechanism
may be of importance when caffeine is given in com-
bination with either VPA or clonazepam, whose pro-
tective activities were not affected by caffeine in the
pentetrazole test [38].

MXs are also inhibitors of phosphodiesterases at
high doses [44], and this may be a possible mecha-
nism of action for the interaction of caffeine with

AEDs. However, similar to A� adenosine receptors,
this mechanism appears unlikely because pentoxifyl-
line, in doses equivalent to caffeine, only moderately
reduced the anticonvulsant activity of PHT against
MES in mice and was completely ineffective against
other classic AEDs [13].

The resistance of some newer AEDs to caffeine in
the MES test raises another question. The AEDs sus-
ceptible to caffeine display a number of anticonvul-
sant mechanisms of action: they are blockers of
voltage-dependent sodium channels (CBZ, PHT, and
VPA) or L- and T-type calcium channels (CBZ, TPM,
and VPA), GABA enhancers (VPA, PB, TPM), and
AMPA receptor blockers (PB or TPM) [12, 19, 45].
The drugs resistant to the hazardous influence of caf-
feine in the MES test differ in that they are inhibitors
of other types of voltage-operated calcium channels.
In fact, LTG and OXC inhibit N, P/Q, and R-calcium
currents, and this particular feature is not shared by
classic AEDs or TPM [45]. Moreover, while TGB re-
sembles VPA in that both AEDs lead to a considerable
increase in synaptic GABA, the effect of TGB is con-
siderably more potent [45]. Although this difference
may contribute to the resistance of TGB to acute caf-
feine, a pharmacokinetic factor may be involved in
the interaction between TGB and caffeine because the
free plasma concentration of TGB was significantly
elevated [9].

Regardless of the particular mechanisms involved
in the interaction between caffeine and certain AEDs,
epileptic patients should be discouraged from ingest-
ing caffeine or using drugs containing caffeine. Re-
markably, caffeine may reach pharmacologically rele-
vant plasma concentrations after 1–3 cups of coffee
[44]; thus, coffee drinking habits may create real
problems for epileptic patients, as highlighted in clini-
cal reports [3, 4, 32]. To the degree that experimental
data are transferable to clinical conditions, patients on
LTG, OXC, or TGB therapy may be less susceptible
to caffeine compared with patients taking classic
AEDs or TPM. Caffeine may increase seizure fre-
quency in epileptic patients through the untoward in-
teraction with AEDs without being a risk factor for
the development of seizures or epilepsy. In fact,
Dworetzky et al. [23] have conducted a prospective
study in 116,363 women evaluating caffeine as a risk
factor. This study has shown that caffeine was not as-
sociated with an increased risk of epilepsy. Emotional
stress or sleep deprivation may provoke seizures [42].
However, caffeine does not seem to be a seizure-

16 �����������	��� 
������ ����� ��� �����



precipitating factor in epileptic patients [42]. Clinical
data indicate that patients ingesting caffeine may ex-
perience increased seizure frequency [3, 4, 32], but it
is not considered a seizure precipitant [42].
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