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Abstract:

The aim of this study was to assess the interaction between the heme oxygenase-1/ biliverdin/carbon monoxide (HO-1/BVD/CO)

and cyclooxygenase-2 (COX-2) pathways in the writhing test. Mice were pretreated with 0.1, 1 or 10 mg/kg, ip etoricoxib, a selec-

tive COX-2 inhibitor, or with one of the following HO-1/BVD/CO pathway modulators: 1, 3 or 9 mg/kg, sc ZnPP IX, a specific

HO-1 inhibitor, 0.3, 1 or 3 mg/kg, sc hemin, a substrate of the HO-1/BVD/CO pathway; or 0.00025, 0.025 or 2.5 µmol/kg, sc DMDC,

a CO donor. Mice pretreated with etoricoxib or one of the HO-1/BVD/CO pathway modulators received an injection of acetic acid

(ip) after 30 and 60 min, respectively. Next, the number of writhes was quantified between 0 and 30 min after stimulus injection. In

another series of experiments, ineffective doses of etoricoxib were co-administered with hemin or DMDC and an effective dose of

etoricoxib with ZnPP IX, followed by an acetic acid injection. Four hours after the acetic acid injection, levels of bilirubin, which is

a product of BVD conversion by the BVD reductase enzyme, in the peritoneal lavage were determined. Hemin or DMDC reduced

(p < 0.05) the number of writhes, but ZnPP IX potentiated (p < 0.05) the effect of acetic acid by increasing (p < 0.05) the number of

writhes. The co-administration of etoricoxib with hemin or DMDC reduced (p < 0.05) the number of writhes. However, the analge-

sic effect of etoricoxib was not observed in the presence of ZnPP IX. Pretreatment with ZnPP IX reduced bilirubin levels, but etori-

coxib pretreatment significantly increased the bilirubin concentration in peritoneal exudates. The data obtained from these

experiments showed that the HO-1/BVD/CO pathway was activated in the acetic acid-induced abdominal writhing model. The anal-

gesic effect of etoricoxib was at least partially dependent on the participation of the HO-1/BVD/CO pathway.
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Introduction

Heme oxygenase (HO) is the rate-limiting enzyme

that catalyzes the degradation of heme to liberate car-

bon monoxide (CO), biliverdin and free iron in mam-

malian cells [1]. To date, three isoforms of HO (HO-1,

HO-2, and HO-3) have been identified. HO-1 is in-

ducible [22, 24], whereas HO-2 and HO-3 are consti-

tutively expressed [24]. HO-1 is induced in a variety of

cells, including endothelial cells, monocytes/macro-

phages, neutrophils and fibroblasts, by heme, endo-
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toxins, cytokines, nitric oxide and other mediators

produced during inflammatory responses [1, 7, 29, 40].

HO-1 plays an important role in the antioxidant de-

fense system, and its induction provides a negative

feedback for cell activation and the production of in-

flammatory mediators, which could modulate, at least

partially, the inflammatory pain process [1].

Nonsteroidal anti-inflammatory drugs (NSAIDs)

exert their major therapeutic and adverse effects by

inhibiting cyclooxygenases (COXs) [37]. COXs exist

in at least two functionally distinct isoforms [18, 32].

The constitutive isoform of COX, COX-1, is a house-

keeping gene that has clear physiological functions.

The inducible isoform, COX-2, is induced by a vari-

ety of noxious stimuli and produces great amounts of

prostaglandins (PGs) associated with inflammation

and pain development [38]. This theory has led to the

development of a new generation of NSAIDs with the

promise of fewer adverse effects, namely selective

COX-2 inhibitors (i.e., COXIBs) [21, 39].

The interplay between the HO-1 and COX-2 path-

ways has recently been addressed [1]. In this regard,

during inflammatory processes, HO-1 overexpression

could result in the inhibition of heme proteins, includ-

ing cytochrome P-450 isozymes and cyclooxyge-

nases, due to diminished heme availability [13].

Because the activities of both the HO-1 and COX-2

enzymes are induced by the same pro-inflammatory

mediators, the present study was designed to investi-

gate the effect of hemin (a HO-1 inducer), DMDC

(a CO-releasing molecule) or ZnPP IX (a specific

HO-1 inhibitor) on the antinociceptive effect of etori-

coxib, a COXIB that has been approved for the treat-

ment of inflammatory and painful conditions [25]. We

also investigated whether the analgesic effect of etori-

coxib in the writhing test was dependent on the integ-

rity of the HO-1/BVD/CO pathway.

Material and Methods

Animals

Male Swiss mice (25–30 g) were housed at 25 ± 1°C

under a 12/12 h light/dark cycle, and food and water

were supplied ad libitum. All efforts were made to

minimize animal suffering and the number of animals

used. The study protocol was approved by the local

Committee of Animal Use and Care in accordance

with the “Guide for the Care and Use of Laboratory

Animals” from the Brazilian College of Animal Ex-

perimentation (COBEA).

Measurement of antinociceptive activity

Nociception was assessed using the writhing test [3,

20]. Briefly, acetic acid, (0.1 ml of a 0.6% v/v solu-

tion per 10 g of body weight) was injected intraperito-

neally (ip) in mice. These animals were placed in

a large glass cylinder, and the intensity of nociception

was quantified by counting the total number of

writhes that occurred between 0 and 30 min after

stimulus injection. The writhing response is character-

ized by a wave of contractions of the abdominal mus-

culature followed by an extension of the hind limbs.

Drugs

Zinc protoporphyrin IX (ZnPP IX; a specific HO-1 in-

hibitor), hemin (an HO-1 substrate), dimanganese de-

cacarbonyl (DMDC; a CO donor), and indomethacin

were purchased from Sigma (St. Louis, MO, USA).

Acetic acid was purchased from Reagen Quimibrás

Ind. Química (Rio de Janeiro, RJ, Brazil). Etoricoxib

(Merck Sharp and Dohme, Whitehouse Station, NJ,

USA) was diluted in 0.9% sterile saline solution.

Indomethacin was diluted in a 5% NaHCO� solution,

and the pH was adjusted to 8.0 using 0.1 M HCl.

ZnPP IX was dissolved in 50 mM Na�CO�. Hemin

was dissolved in 1 mM NaOH, and DMDC was dis-

solved in Tween 80. All drugs were protected from

light, except DMDC, which was exposed to cold light

before administration to mice [15].

Study design

To assess the effects of the test drugs, animals re-

ceived (ip) the selective COX-2 inhibitor, etoricoxib

(0.1, 1 or 10 mg/kg), or an equivalent volume of its

respective vehicle 30 min before an acetic acid (0.6%)

injection. The specific HO-1 inhibitor ZnPP IX (1, 3 or

9 mg/kg), the HO-1 substrate hemin (0.3, 1 or 3 mg/kg),

the CO-releasing molecule DMDC (0.00025, 0.025 or

2.5 µmol/kg), or an equivalent volume of their respec-

tive vehicles were administered (sc) 1 h before acetic

acid (0.6%) injection, except for those mice pretreated

with ZnPP IX, which received a lower dose of acetic

acid (0.3% ip). This dose of 0.3% acetic acid per cav-
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ity was used in mice pretreated with the specific HO-1

inhibitor to promote a submaximal writhing response

and to allow a recording of a possible enhancement of

the number of writhes by treatment with the specific

HO-1 inhibitor [10].

To validate the data, a positive control group of

mice was pretreated (sc) with indomethacin (5 mg/kg)

1 h before stimulus injection. Untreated groups (NT)

consisted of mice that received only acetic acid (ip)

followed by 0.9% sterile saline (ip). The etoricoxib

dose selection was based on a previous study [5]. The

doses of HO-1 pathway agents were selected in accor-

dance with the literature [10, 35]. It is important to

mention that 1 mol of DMDC (Mn�CO��) in experi-

mental conditions releases 4 moles of CO [8].

To analyze the effect of HO-1 pathway agents on

etoricoxib-induced antinociception, another series of

experiments was performed. Animals were pretreated

(sc) with the lower doses of the HO-1 pathway agents,

hemin (0.3 mg/kg) or DMDC (0.00025 µmol/kg), and

30 min later, the animals received (ip) the lower dose

of etoricoxib (0.1 mg/kg). After 30 min, acetic acid

(0.6%) was injected, and the total number of writhes

was counted as described above. Furthermore, to ana-

lyze the effect of ZnPP IX on the analgesic efficacy of

etoricoxib, the animals were pretreated (sc) with

ZnPP IX (3 mg/kg), followed by an injection (ip) of

an effective dose of etoricoxib (1 mg/kg) 30 min later.

After 30 min, acetic acid (0.6%) was injected (ip), and

the total number of writhes was counted for the next

30 min.

Determination of bilirubin

Four hours after acetic acid injection, the animals

were sacrificed, and the peritoneal exudate was col-

lected for the determination of the amount of biliru-

bin. Bilirubin was measured in peritoneal exudate

using a commercial kit (Labtest�, Lagoa Santa, MG,

Brazil) following the manufacturer’s protocol. Sam-

ples were read at 540 nm, and the results were ex-

pressed as mg bilirubin per ml of exudate [10].

Data analysis and statistics

The results are presented as the mean ± SEM of meas-

urements made for six animals in each group. Differ-

ences between means were compared using a one-

way ANOVA followed by Tukey’s test. In these tests,

the criterion for statistical significance was p < 0.05.

Results

Effect of pretreatment with etoricoxib on

the writhing response to acetic acid

The injection (ip) of a 0.6% (v/v) solution of acetic

acid (0.1 ml/10 g) in mice induced a significant writh-

ing response between 0 and 30 min, which was sig-

nificantly (p < 0.05) inhibited by pretreatment (sc)

with indomethacin (5 mg/kg). Etoricoxib (1 or 10 mg/kg),

injected (ip) 30 min prior to the stimulus injection, sig-

nificantly inhibited (p < 0.05) the nociceptive response

by 52.54% and 93.02%, respectively, compared to the

NT group (Fig. 1). Although the lower dose of etori-

coxib (0.1 mg/kg) tended to reduce the number of

writhes, it failed to exhibit a significant (p > 0.05)

antinociceptive effect.

Effect of pretreatment with ZnPP IX, hemin, or

DMDC on the writhing response to acetic acid

The pretreatment of animals with ZnPP IX (3 mg/kg)

potentiated (p < 0.05) the number of writhes (p > 0.05)

(Fig. 2). Indeed, pretreatment of the animals with hemin

(3 mg/kg) or DMDC (2.5 µmol/kg) significantly in-

hibited (p < 0.05) the nociceptive response by 70.38%

and 60.44%, respectively, compared to the NT group
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Fig. 1. Effect of the systemic administration of etoricoxib on the writh-
ing response induced by acetic acid in mice. The number of writhes
was determined between 0 and 30 min after injection (ip) of acetic
acid (0.6% (v/v), 0.1 ml/10 g of animal mass). A positive control was
pretreated (sc) with indomethacin (Indo) (5 mg/kg). Etoricoxib (0.1, 1
or 10 mg/kg, ip) was given 30 min before injection of acetic acid.
Data are expressed as the mean ± SEM of 6 mice for each group.
* p < 0.05 indicates a significant difference from the untreated (NT)
group (ANOVA; Tukey’s test)



(Fig. 1). Although the lower doses of hemin (0.3 or

1 mg/kg) or DMDC (0.00025 or 0.025 µmol/kg)

tended to reduce the number of writhes, both failed to

exhibit significant (p > 0.05) effects.

Effect of ZnPP IX, hemin or DMDC on

etoricoxib-induced antinociception in the

writhing response to acetic acid

To investigate the role of HO-1 activity in the antino-

ciceptive effect of etoricoxib, animals were pretreated

(sc) with ZnPP IX (3 mg/kg). After 30 min, the ani-

mals received (ip) an effective dose of etoricoxib

(1 mg/kg), followed by an acetic acid (0.6%) injection

(ip) 30 min later. The total number of writhes was

counted for the next 30 min. An analgesic effect of

etoricoxib (1 mg/kg) on the acetic acid-induced writh-

ing test in mice was not observed in the presence of

ZnPP IX (3 mg/kg), a specific HO-1 inhibitor (Fig. 3).

Because we observed that the inhibition of HO-1 ac-

tivity reduced the analgesic effect of etoricoxib in the

writhing response to acetic acid, we next investigated

whether its substrate, hemin, or its metabolite, CO,

could also interfere with the analgesic effect of etori-

coxib in this animal model. The combination of inef-

fective doses of etoricoxib (0.1 mg/kg) with hemin

(0.3 mg/kg) or DMDC (0.00025 µmol/kg) signifi-

cantly (p < 0.05) inhibited the nociceptive responses

by 92.70% and 60.60%, respectively, compared to the

NT group (Fig. 3).

Subsequently, we determined the bilirubin concen-

tration in peritoneal exudates as indices of HO-1 ac-

tivity. As shown in Table 1, an ip challenge with ace-

tic acid promoted an increase in bilirubin levels in

peritoneal exudates, which indicated that HO-1 activ-

ity was enhanced in the writhing response to acetic

acid. Accordingly, we observed that the bilirubin lev-

els in peritoneal exudates were reduced by pretreat-

ment with ZnPP IX. Furthermore, the pretreatment of

mice with etoricoxib significantly increased the bili-

rubin concentration in peritoneal exudates induced by

acetic acid.

Discussion

In this work, we explored the involvement of HO/

BVD/CO in etoricoxib-induced antinociception and

the interplay between the HO-1 and COX-2 systems

and found evidence that the molecular cascade

formed by COX-2-HO/CO/BVD reduced nociception

during an acute inflammatory reaction.
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Fig. 2. Effect of the systemic administration of HO-1 pathway agents on the writhing response induced by acetic acid in mice. The number of
writhes was determined between 0 and 30 min after an ip injection of acetic acid (0.6% (v/v), 0.1 ml/10 g of animal mass). A positive control was
pretreated (sc) with indomethacin (Indo) (5 mg/kg). Hemin (0.3, 1 or 3 mg/kg) or DMDC (0.00025, 0.025 or 2.5 µmol/kg) was given sc 1 h before
acetic acid (0.6%). ZnPP IX (1, 3 or 9 mg/kg) was given sc 1 h before acetic acid (0.3%). Data are expressed as the mean ± SEM of 6 mice for
each group. * p < 0.05 indicates a significant difference from the untreated (NT) group (ANOVA; Tukey’s test)



Regulatory interactions between the HO-1 and

COX pathways have previously been reported [1], but

there is a limited amount of data concerning these in-

teractions in inflammatory pain modulation. During

the inflammatory process, cellular heme levels affect

COX expression and activity, and heme-HO has

a possible regulatory role in the expression of vascu-

lar COX and the production of the vasoactive

prostanoids, PGE� and PGI� [13]. Therefore, HO-1

overexpression decreases COX activity in endothelial

cells, resulting in a lower production of PGI� and

PGE�. Heme binding to histidine residues on peroxi-

dase binding sites of COX isoforms is required for

this catalytic activity [33].

The COXIB etoricoxib is approximately three

times more selective than rofecoxib or valdecoxib,

and it is fifteen times more selective than celecoxib

[30]. Etoricoxib has a rapid action, demonstrates good

anti-inflammatory and analgesic effects in patients

with osteoarthritis and rheumatoid arthritis, and has

a more favorable GI safety profile than the standard

nonselective NSAIDs [14, 30].

Over the last few years, numerous studies have

demonstrated that HO-1 expression and the concomi-

tant production of its metabolites, CO and BVD, have

anti-inflammatory consequences [23, 34, 36]. In fact,

heme-induced HO-1 results in a reduction of cell mi-

gration, exudation and pro-inflammatory mediator re-

lease in a zymosan-induced air pouch inflammation

model [40]. There is evidence that CO stimulates

soluble guanylate cyclase activity and increases cellu-

lar levels of cyclic GMP [8, 26, 31]. Ferreira et al. [9]

have provided experimental support to suggest that

elevated levels of cyclic GMP are associated with an

inhibition of nociceptor hypersensitivity. In this re-

gard, our research group recently demonstrated an in-

crease in antinociceptive responses produced by

a combination of agents that increase intracellular cy-
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Tab. 1. Bilirubin levels (mg/ml) in peritoneal exudates of mice after
pretreatment with zinc protoporphyrin IX (ZnPP IX) or etoricoxib and
challenged with acetic acid

Control Acetic acid 0.6%

NT ZnPP IX

(9 mg/kg)
Etoricoxib

(10 mg/kg)

Bilirubin 0.01
± 0.002

0.11
± 0.006

0.01
± 0.001*

0.37
± 0.030*

The mice were pretreated (sc) with ZnPP IX (9 mg/kg), etoricoxib (ip)
or with vehicle 30 min before (ip) challenge with acetic acid. Perito-
neal exudates were collected 4 h after challenge, and bilirubin con-
tent was analyzed as described in the Methods section. The results
are expressed as the means ± SEM (mg/ml) of 6 animals in each
group (control, vehicle, ZnPP IX and etoricoxib). * p < 0.05 for ani-
mals injected with acetic acid vs. untreated animals (NT group)
(ANOVA followed by Tukey’s test)

Fig. 3. Effect of the systemic administration of HO-1 pathway agents on etoricoxib-induced antinociception of the writhing response induced
by acetic acid in mice. The number of writhes was determined between 0 and 30 min after an ip injection of acetic acid (0.6% (v/v), 0.1 ml/10 g
of animal mass). A positive control was pretreated (sc) with indomethacin (Indo) (5 mg/kg). Hemin (0.3 mg/kg) or DMDC (0.00025 µmol/kg) was
given sc 30 min after etoricoxib (ETX 0.1 mg/kg, ip) was injected. Thirty minutes later, acetic acid (0.6%) was injected, and the total number of
writhes was counted. In another series of experiments, animals were pretreated (sc) with ZnPP IX (3 mg/kg). After 30 min, the animals received
(ip) etoricoxib (ETX 1 mg/kg), followed by an acetic acid (0.6%) injection (ip) 30 min later. The total number of writhes was counted for the next
30 min. Data are expressed as the mean ± SEM of 6 mice for each group. * p < 0.05 indicates a significant difference from the untreated (NT)
group (ANOVA; Tukey’s test).



clic GMP concentrations [3]. Therefore, DMDC-

delivered CO could reduce writhing responses by in-

creasing cyclic GMP. Accordingly, the HO substrate

hemin and the CO-releasing molecule DMDC (HO

metabolite) inhibited acetic acid-induced writhes in

a dose-dependent manner in the present study.

We then demonstrated that the HO/BVD/CO path-

way had antinociceptive effects during acetic acid-

induced nociception. In support of this hypothesis, we

observed that treatment with ZnPP IX, a specific in-

hibitor of HO-1, enhanced the writhing response in-

duced by a sub-maximal dose of acetic acid. There-

fore, our findings corroborate other data showing that

the inhibition of the HO-1 pathway is associated with

a worsening of the inflammatory response [1, 2, 40].

In addition, in our experimental conditions, HO-1 ac-

tivity was significantly enhanced, as increased levels

of bilirubin were detected in the peritoneal exudate af-

ter an acetic acid challenge, and ZnPP IX reduced

bilirubin production.

After pretreatment with ZnPP IX, an analgesic effect

of etoricoxib on the writhing response was not ob-

served, which suggests that HO-1 activity is involved

in the inhibitory effect of etoricoxib in this model. Ac-

cordingly, the pretreatment of mice with etoricoxib

significantly increased the bilirubin concentration in

peritoneal exudates induced by acetic acid.

For many years, the analgesic and anti-inflam-

matory properties of NSAIDs have been ascribed to

their ability to block PG synthesis by the inhibition of

COX [37]. In addition to the ability to inhibit COX,

NSAIDs possess free radical scavenging properties

and, as a consequence, might decrease tissue damage

that contributes to its anti-inflammatory and analgesic

therapy [16]. In this regard, treatment with the COX-2

inhibitor rofecoxib significantly reduced oxidative

stress in a rat model of aluminum-induced oxidative

stress, which is used to mimic Alzheimer’s disease-

like conditions [28]. In fact, salicylate, the active me-

tabolite of aspirin, exerts COX-independent anti-

inflammatory effects through the induction of HO-1

[11]. Furthermore, daily doses of NSAIDs increase

circulating levels of antioxidants in rheumatoid arthri-

tis [27, 28]. Various NSAIDs activate the three fami-

lies of MAP kinases, and this activation depends on

the presence of reactive oxygen species [19]. Indeed,

NS-398, a selective COX-2 inhibitor, increases HO-1

protein expression in vascular smooth muscle cells after

inflammatory cytokine stimulation [6]. Considering all

of this evidence, it would be worthwhile to clarify the

role of COX-2 in oxidative stress or adaptive re-

sponses and the relationship between HO-1 and

COX-2.

The discovery of two COX isoenzymes, a constitu-

tive COX-1 serving homeostatic prostaglandin syn-

thesis, including gastric mucosal defense and renal

homeostasis, and COX-2, which synthesizes detrimen-

tal PGs that are responsible for inflammation and pain in

several sites, led to the development of selective COX-2

inhibitors that promise minimal NSAID-typical toxicity

with full anti-inflammatory efficacy [6, 10].

To date, the strategy of selective COX-2 inhibition

has been successful. Selective COX-2 inhibitors have

significantly less gastrotoxicity and no effects on

platelet aggregation. However, with regard to renal

adverse events, selective COX-2 inhibitors do not of-

fer a clinically relevant advantage over non-selective

inhibitors. Moreover, concerns over the cardiovascu-

lar risks of selective COX-2 inhibitors have recently

been raised [12].

We also observed that an ineffective dose of etori-

coxib associated with ineffective doses of HO-1 path-

way agents (e.g., hemin or DMDC) significantly re-

duced the writhing response. Because HO-1 induction

may inhibit COX-2 induction [1], this evidence could

at least partially explain the increased antinociception

observed when small doses of etoricoxib and hemin

were administered concomitantly. Indeed, COX-2 in-

duction is inhibited by CO [4], which provides some

explanation for the increased analgesic effect ob-

served when small doses of etoricoxib and DMDC,

a CO donor, were administered concomitantly. There-

fore, these associations may contribute to the thera-

peutic effectiveness of selective COX-2 inhibitors and

might further reduce the side effects mediated by

these drugs.

The local irritation provoked by acetic acid in the

intraperitoneal cavity triggers a variety of mediators,

such as bradykinin, substance P, PGs (especially

PGI2), and some cytokines, such as interleukin-1�

(IL-1�), tumor necrosis factor-� (TNF-�) and IL-8

[17]. These mediators activate chemosensitive no-

ciceptors that contribute to the development of in-

flammatory pain. In the present study, etoricoxib or

HO-1/BVD/CO pathway modulators (e.g., hemin or

DMDC) alone or co-administered reduced writhing,

which suggests that their antinociceptive effect could

be related to the inhibition of the release of mediators

in response to acetic acid, which reduces the activa-

tion of chemosensitive nociceptors.
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To summarize, the present study provides evidence

that the antinociceptive effect of etoricoxib was de-

pendent on the integrity of the HO-1/BVD/CO path-

way, which gives new insight into the mechanism of

the action of COX-2 inhibitors. The combination of

both HO-1 pathway agents and COXIBs may contrib-

ute to the therapeutic effectiveness of these drugs and

might further reduce the side effects mediated by the

blockade of the COX-2. Taking these results into ac-

count, the design of new analgesics is very encourag-

ing. However, the pharmacological profile of these as-

sociations must be subject to further investigations.
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