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Abstract:

The aim of the present study was to estimate the inhibitory effect of perazine, a phenothiazine neuroleptic with piperazine structure

in a side chain, on human CYP1A2 activity measured as a rate of caffeine 3-N- and 1-N-demethylation. Moreover, the influence of

perazine on other caffeine metabolic pathways such as 7-N-demethylation (CYP1A2, CYP2C8/9, CYP3A4) and 8-hydroxylation

(CYP3A4, CYP1A2, CYP2C8/9) was also determined. The Dixon analysis showed that in both human liver microsomes and Super-

somes CYP1A2 perazine potently and to a similar degree inhibited caffeine 3-N-demethylation (K� = 3.5 µM) and 1-N-demethyla-

tion (K� = 5 µM). Perazine moderately diminished the rate of caffeine 7-N-demethylation in Supersomes CYP1A2 (K� = 11.5 µM)

and liver microsomes (K� = 20 µM), and attenuated C-8-hydroxylation (K� = 15.5 µM) in Supersomes CYP1A2. On the other hand,

perazine weakly inhibited caffeine C-8-hydroxylation in liver microsomes (K� = 98 µM). About 80% of basal CYP1A2 activity was

reduced by the therapeutic concentrations of perazine (5–10 µM).

The obtained results show that perazine at its therapeutic concentrations is a potent inhibitor of human CYP1A2. Hence, taking ac-

count of CYP1A2 contribution to the metabolism of endogenous substances (steroids), drugs (xanthine derivatives, phenacetin, pro-

pranolol, imipramine, phenothiazine neuroleptics, clozapine) and carcinogenic compounds, the inhibition of CYP1A2 by perazine

may be of physiological, pharmacological and toxicological importance.
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Introduction

Cytochrome P450 isoenzyme 1A2 (CYP1A2) consti-

tutes approximately 13% of the total cytochrome

P450 (CYP) protein in human liver [35]. The enzyme

catalyzes the metabolism of several clinically impor-

tant drugs and endogenous substances, such as caf-

feine, theophylline, phenacetin, imipramine, phe-

nothiazine neuroleptics, propranolol, clozapine, mela-

tonin and steroids [30, 31, 40, 41]. It also plays an

important role in the metabolic transformation of het-

erocyclic aromatic amines into reactive intermediates,

leading to toxicity and cancer [28]. Furafylline, an an-

tiasthmatic drug of the methylxanthine group, has

been reported to be a selective and potent inhibitor of
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CYP1A2 activity in human liver microsomes [6, 25,

34]. Moreover, it has been shown that fluvoxamine,

a selective serotonin reuptake inhibitor (SSRI),

strongly inhibits human CYP1A2 [4]. Phenacetin

O-deethylase, acetanilide 4-hydroxylase and caffeine

3-N-demethylase activities are often used as markers

of human CYP1A2 activity [16, 27, 31, 38].

Caffeine (1,3,7-trimethylxanthine) is an established

marker substrate for testing CYP1A2 activity using

3-N-demethylation in humans [3, 16, 24, 32, 34]. The

compound undergoes 1-N-demethylation to theobro-

mine, 3-N-demethylation to paraxanthine (the main

metabolic route), 7-N-demethylation to theophylline

and C-8-hydroxylation to 1,3,7-trimethyluric acid.

Recent studies by Kot and Daniel [24] showed that,

besides 3-N-demethylation, 1-N-demethylation is also

specifically catalyzed by CYP1A2 at a therapeutic

concentration of caffeine (100 µM), both reactions

showing a simple enzyme kinetics. The 7-N-

demethylation of caffeine is catalyzed non-specifically,

mainly by CYP1A2, and to a lesser extent by

CYP2C8/9 and CYP3A4. C-8-hydroxylation prefer-

entially involves CYP1A2 and CYP3A4 and, to

a lesser degree, CYP2C8/9. Similar results were ob-

tained at a higher substrate concentration (1 mM). Caf-

feine may also be used as a marker substrate for assess-

ing CYP1A2 activity in rats, but only in case when C-

8-hydroxylation is used as a marker reaction [23].

Perazine belongs to the group of phenothiazine

neuroleptics with piperazine structure in a side chain.

It is a moderate antagonist of dopaminergic D2 recep-

tors and a weak antagonist of dopaminergic D1, ad-

renergic �1, serotonergic 5-HT2 and cholinergic mus-

carinic M1 receptors, hence it rarely produces side-

effects in the central or the autonomic nervous sys-

tem. In contrast to many other phenothiazine neuro-

leptics, perazine does not negatively influence mood;

furthermore, some clinicians even attribute certain an-

tidepressant properties to it. For these reasons, pera-

zine is often used in geriatric patients and in a combi-

nation therapy with antidepressants [22, 29]. CYP1A2

and CYP3A4 are the main izoenzymes that catalyze

5-sulfoxidation, while CYP2C19 is the chief isoform

responsible for the N-demethylation of perazine in

humans [43]. Unlike in humans, CYP2B and CYP2D

are the main isoforms responsible for perazine 5-

sulfoxidation, while CYP1A2, CYP2B and CYP3A

chiefly catalyze its demethylation in rats [11]. On the

other hand, the aromatic hydroxylation of phenothi-

azines is governed by CYP2D6 in humans [26, 44].

Our preliminary study, performed on a primary cul-

ture of human hepatocytes derived from one patient,

suggested an inhibitory effect of perazine on CYP1A2

activity [42]. Therefore the aim of the present study

was to estimate the inhibitory effect (Ki) of perazine

on human CYP1A2 activity (measured as a rate of

caffeine 3-N-demethylation and 1-N-demethylation)

using two complementary in vitro models: human

liver microsomes (pooled liver microsomes from six

patients) and cDNA-expressed human CYP1A2 (Su-

persomes CYP1A2). Moreover, the influence of pera-

zine on other caffeine metabolic pathways (7-N-

demethylation and 8-hydroxylation) was concurrently

determined.

Materials and Methods

Drugs and chemicals

Perazine (dimaleate) was obtained from Labor (Wroc³aw,

Poland). Caffeine, paraxanthine, theobromine, theophyl-

line, 1,3,7-trimethyluric acid and NADPH were pro-

vided by Sigma (St. Louis, USA). All the HPLC pu-

rity organic solvents were supplied by Merck (Darm-

stadt, Germany).

Human liver microsomes

Pooled human liver microsomes from patients HG5,

HG8, HG15, HG6, HG83 and HG85 were obtained

from Gentest Co. (Woburn, MA, USA).

Studies into caffeine metabolism in human liver

microsomes were carried out at the linear dependence

of product formation on time, protein and substrate

concentration. The rates of 1-N-, 3-N- and 7-N-

demethylation and 8-hydroxylation of caffeine (caf-

feine concentrations: 50, 100, 200, 400 and 800 µM)

were assessed in the absence and presence of perazine

added in vitro (perazine concentrations: 1, 2.5, 5, 10,

20, 50 µM). Incubation was carried out in a system

containing liver microsomes (ca. 0.5 mg of pro-

tein/ml), a phosphate buffer (0.15 M, pH 7.4) and

NADPH (1 mM). The final incubation volume was

0.5 ml. Each sample was prepared in duplicate. After

50-min incubation, the reaction was terminated by

adding 700 µl of a 2% ZnSO4 and 50 µl of 2M HCl.

Caffeine and its metabolites were analyzed by the
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high-performance liquid chromatography method

(HPLC) described below.

cDNA-expressed human CYPs

Microsomes from baculovirus-infected insect cells

expressing CYP1A2 co-expressed with NADPH P450

oxidoreductase (Supersomes 1A2) were obtained

from Gentest Co. (Woburn, MA, USA). Studies into

caffeine metabolism in Supersomes were carried out

at the linear dependence of product formation on

time, protein and the amount of CYP1A2 and sub-

strate concentration. Caffeine metabolism was studied

under experimental conditions similar to those de-

scribed for liver microsomes using 50, 100, 200 and

400 µM caffeine and 0.5, 1, 2.5, 5, 10 and 20 µM

perazine, except for the fact that the final concentra-

tion of CYP1A2 was 100 pmol/ml. Caffeine and its

metabolites were analyzed by the HPLC method de-

scribed below.

Determination of caffeine and its metabolites

Caffeine and its four primary metabolites: theobro-

mine (caffeine 1-N-demethylation), paraxanthine (caf-

feine 3-N-demethylation), theophylline (caffeine 7-

N-demethylation) and 1,3,7-trimethyluric acid (caf-

feine C-8-hydroxylation), were assessed using the

HPLC method as described previously [24]. Briefly,

after incubation, the samples were centrifuged for 10

min at 2000 × g. A water phase containing caffeine

and its metabolites was extracted with 6 ml of an or-

ganic mixture consisting of ethyl acetate and 2-

propanol (8:1, v/v). The residue obtained after evapo-
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ration of the microsomal extracts was dissolved in

100 µl of the mobile phase described below. An ali-

quot of 20 µl was injected into the HPLC system. The

La Chrom Merck-Hitachi (Darmstadt, Germany)

HPLC system, equipped with a L-7100 pump, an

L-7400 UV detector and a D-7000 System Manager,

was used. The analytical column (Supelcosil LC-18,

150 × 4.6 mm, 5 µm) was from Supelco (Bellefonte,

USA). The mobile phase consisted of 0.01 M acetate

buffer (pH = 3.5) and methanol (91:9, v/v). The flow

rate was 1 ml/min (0–16.5 min) followed by 3 ml/min

(16.6–25 min). The column temperature was 30oC.

The absorbance of caffeine and its metabolites was

measured at a wavelength of 270 nm.

Results

Perazine significantly inhibited caffeine 1-N-, 3-N-,

7-N-demethylation and C-8-hydroxylation in human

liver microsomes and Supersomes CYP1A2; how-

ever, its potency towards particular metabolic path-

ways was diverse. The Dixon analysis showed that in

both human liver microsomes and Supersomes

CYP1A2, perazine potently and to a similar degree

inhibited caffeine 3-N-demethylation (Ki = 3.5 µM)

and 1-N-demethylation (Ki = 5 µM) (Figs. 1 and 2,

Tab. 1). Perazine moderately diminished the rate of

caffeine 7-N-demethylation in Supersomes CYP1A2
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(Ki = 11.5 µM) and in liver microsomes (Ki = 20 µM),

as well as the rate of caffeine C-8-hydroxylation (Ki =

15.5 µM) in Supersomes CYP1A2 (Figs. 1 and 2, Tab.

1). On the other hand, perazine weakly inhibited caf-

feine C-8-hydroxylation in liver microsomes (Ki = 98

µM) (Fig. 2, Tab. 1).

Perazine inhibited in a concentration-dependent

manner CYP1A2 activity measured as a rate of caf-

feine 3-N- and 1-N-demethylation in liver micro-

somes (Fig. 3). About 80% of basal CYP1A2 activity

was distinctly inhibited at the therapeutic concentra-

tions of perazine (5–10 µM) and caffeine (up to 100 µM).

Higher concentrations of perazine did not signifi-

cantly enhance that effect (Fig. 3).

Discussion

The obtained results show that perazine applied in

therapeutic concentrations exerts an inhibitory effect

on caffeine metabolism in human, its potency towards

particular metabolic pathways being different,

though. The Dixon analysis of caffeine metabolism,

carried out on human liver microsomes and cDNA-

expressed CYP1A2 (Supersomes CYP1A2), showed

that perazine decreased the rate of 1-N-, 3-N- and 7-

N-demethylation, and C-8-hydroxylation of caffeine,

the effect on 3-N-demethylation and 1-N-demeth-

ylation being the most pronounced (Ki = 3.5–5 µM).

This observation indicates potent inhibition of

CYP1A2 by perazine at the Ki value in the range ob-

served for the Ki values of such well-known CYP1A2

inhibitors as furafylline and fluvoxamine (Ki = 0.12–3

µM, depending on the substrate used), as well as in

the range for the therapeutic concentrations of the

neuroleptic tested [1, 4, 6, 15, 25, 34, 39].

A number of studies into caffeine metabolism have

shown that 3-N-demethylation to paraxanthine in hu-

mans (the main oxidation pathway) is specifically

catalyzed by CYP1A2. However, recent detailed stud-

ies by Kot and Daniel [24] have demonstrated that

CYP1A2 is the chief enzyme that catalyzes not only
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Tab. 1. +�� ��	������ �	 ����,��� �� ��� ���������� �	 ��		���� in vitro

Enzyme preparations Inhibition of caffeine metabolism by perazine K� (µM)

Caffeine 3-N-demethylation
(Paraxanthine)

Caffeine 1-N-demethylation
(Theobromine)

Caffeine 7-N-demethylation
(Theophylline)

Caffeine C-8-hydroxylation
(1,3,7-trimethyluric acid)

Human liver microsomes 3.5 5 20 98

cDNA-expressed CYP1A2
(Supersomes)

3.5 5 11.5 15.5
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3-N-demethylation, but also 1-N-demethylation of

caffeine (an 85 and 75% contribution, respectively) at

the therapeutic concentration of caffeine (100 µM) in

humans. It also substantially contributes to 7-N-demeth-

ylation (39%) and C-8-hydroxylation (29%). Moreover,

7-N-demethylation is catalyzed by CYP2C8/9 (25%)

and CYP3A4 (14%), while C-8-hydroxylation is sub-

stantially mediated by CYP3A4 (30%), and to a lesser

extent by CYP2C8/9 (18%). At a higher concentra-

tion of the substrate (1 mM), only CYP1A2 contribu-

tion to the C-8-hydroxylation of caffeine is visibly de-

creased (to 16%), mostly in favor of CYP2C8/9

(29%). The present study shows that perazine

potently inhibits 1-N-demethylation (Ki = 5 µM in

liver microsomes and Supersomes CYP1A2) and

moderately lowers 7-N-demethylation (Ki = 20 µM in

liver microsomes, and 11.5 µM in Supersomes

CYP1A2). Moreover, perazine moderately diminishes

caffeine C-8-hydroxylation in liver microsomes (Ki =

15.5 µM), but weakly inhibits this pathway in Super-

somes CYP1A2 (Ki = 98 µM). In the light of Kot and

Daniel’s findings [24], the obtained differences in the

Ki values for caffeine 7-N-demethylation and C-8-

hydroxylation between liver microsomes (containing

all liver CYP isoforms) and Supersomes (containing

CYP1A2 only) may stem from the non-specific ca-

talysis of these metabolic pathways (by CYP1A2,

CYP2C8/9 and CYP3A4) in liver microsomes. In con-

trast, caffeine 3-N-demethylation and 1-N-demethylation

are specifically catalyzed by CYP1A2 in liver micro-

somes. Hence perazine inhibits the latter metabolic

pathways with a similar potency in liver microsomes

and Supersomes CYP1A2.

Although the therapeutic plasma concentration of

perazine reaches up to 0.5 µM, its concentration in the

liver may be about 10–15 times higher (up to 10 µM)

than in the plasma owing to drug distribution [1, 15,

39]. Hence, the interaction between perazine and

CYP1A2 in vitro, observed in the present study,

should also be observed in vivo, since the calculated

Ki values are below the presumed concentration range

for perazine in the liver in vivo, in both pharmacologi-

cal experiments and psychiatric patients. Accordingly,

a recent study by Schaller et al. [33] showed a signifi-

cant elevation of serum clozapine level (up to 400%

of the control value) after concomitant perazine ad-

ministration to schizophrenic patient. The latter

authors suggested that the observed effect was pro-

duced by inhibition of hepatic CYP1A2 (the main

isoenzyme responsible for clozapine metabolism)

and/or CYP3A4 by perazine. However, our earlier

studies demonstrated week inhibition of human

CYP3A4 by perazine [42]. Thus the observed interac-

tion between clozapine and perazine seems to stem

exclusively from CYP1A2 inhibition by perazine.

Perazine may also be responsible for metabolic inter-

actions with antidepressants (tricyclic, SSRIs). Inter-

actions of this type between perazine and tricyclic an-

tidepressants or SSRIs have been observed in rats [7,

12, 13]. However, it is not unlikely that metabolic in-

teractions between perazine and other psychotropic

drugs may also involve the CYP2D subfamily. As

shown previously, perazine exerts relatively potent in-

hibition of rat CYP2D (Ki = 18 µM), which may sug-

gest potent inhibition of human CYP2D6 by that neu-

roleptic [8, 9]. The above observation is consistent

with the results obtained by Shin et al. [36], which

show strong inhibition of CYP2D6 (Ki = 0.8 µM) by

perphenazine, another piperazine-type neuroleptic.

Despite its potent inhibition of human CYP1A2, pera-

zine exerts a weaker inhibitory effect on rat CYP1A2 (Ki

= 52 µM), which indicates species-related differences

in CYP1A2 structure and function [10, 14]. These re-

sults are in line with those obtained by Sesardic et al.

[34], who showed that furafylline inhibited human

CYP1A2 1000-times more potently than rat CYP1A2

one. Therefore, the rat does not seem to be a suitable

animal model for studying drug interactions with

CYP1A2.

Caffeine, a component of coffee, tea, energy drinks

and numerous drugs, is a purine alkaloid and the most

universally used psychoactive substance. The caffeine

concentration value of approximately 100 µM may be

considered “a maximal therapeutic concentration in

humans”. However, some individuals can consume

more than 1 g/day (about 15 mg/kg/day) and even up

to 3.5 g/day (about 50 mg/kg/day) of caffeine in a caf-

feinism syndrome which leads to caffeine concentra-

tions above 100 µM in their blood plasma [2, 5, 21].

Since CYP1A2 is the main isoform responsible for

caffeine metabolism, a pharmacokinetic interaction

between caffeine and perazine may occur. Caffeine

acts through multiple mechanisms, the most impor-

tant of them being antagonism of adenosine receptors

(A1 and A2A), observed at its therapeutic concentra-

tions (10–100 µM). As an adenosine receptor antago-

nist, caffeine increases the release of various neuro-

transmitters [18]. Moreover, as a result of a negative

interaction between adenosine and dopaminergic re-

ceptors, caffeine enhances responses from dopaminer-
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gic receptors [19]. Due to its ability to affect neuro-

transmission in different regions of the brain, caffeine

displays psychomotor stimulant properties and pro-

motes behavioral functions such as vigilance, atten-

tion, mood, and arousal [17]. Since caffeine is not

only a metabolic marker substance, but also a drug

with a very broad pharmacological spectrum, both its

metabolic and pharmacodynamic properties must be

considered when caffeine-perazine interactions are

predicted in pharmacological experiments with labo-

ratory animals and under clinical conditions. For exam-

ple, fluvoxamine, a substrate and a strong CYP1A2 in-

hibitor, decreases the activity of CYP1A2, which may

lead to caffeine intoxication [20]. Similarly, it has

been reported that caffeine accumulates up to a toxic

level due to the potent inhibition of its metabolism in

coffee drinking furafylline-treated volunteers [37].

In conclusion, the obtained results show that pera-

zine at therapeutic concentrations is a potent inhibitor

of human CYP1A2. The results of the present study

may be of great practical value, since perazine is ad-

ministered to patients for months or even years, very

often in combination with antidepressants (tricyclic,

SSRIs) or other neuroleptics. Thus, considering the

contribution of CYP1A2 to the metabolism of en-

dogenous substances (e.g. steroids), drugs and car-

cinogenic compounds, CYP1A2 inhibition by pera-

zine may be of physiological, pharmacological and

toxicological importance.
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