Short communication

Effect of cocaine on responsiveness of \(\alpha_1 \)-adrenergic receptors in rat cerebral cortex: modulation by GABA-mimetic drugs

Krzysztof Wieczerzak, Tadeusz Witarski, Marta Kowalska, Dominika Nawrat, Adam Roman, Adam Bielawski, Irena Nalepa

Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Science, Smętna 12, PL 31-343 Kraków, Poland

Correspondence: Irena Nalepa, e-mail: rfnalepa@cyf-kr.edu.pl

Abstract:
We investigated the effects of single doses of cocaine (10 mg/kg, ip) and the \(\gamma \)-aminobutyric acid (GABA)-mimetics tiagabine (10 mg/kg, ip) and vigabatrin (150 mg/kg, ip) injected separately or concomitantly with cocaine, on the responsiveness of cerebral cortical \(\alpha_1 \)-adrenergic receptors. The accumulation of noradrenaline-stimulated inositol phosphates was estimated \textit{in vitro} at 2 and 24 h after the drug injection. Cocaine significantly enhanced \(\alpha_1 \)-adrenergic receptor responsiveness to noradrenaline. Neither tiagabine nor vigabatrin influenced the accumulation of inositol phosphates. Finally, the cocaine-evoked augmentation of \(\alpha_1 \)-adrenoceptor responsiveness was counteracted by tiagabine but not by vigabatrin. This effect may represent a characteristic feature of tiagabine, not necessarily shared by other GABA-mimetic drugs.

Key words:
\(\alpha_1 \)-adrenergic receptor, inositol phosphate, rat cerebral cortex, cocaine, tiagabine, vigabatrin