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Abstract:

Fluorometric substrates selective for various cytochrome P450 isoforms (P450s) have great advantages in in vitro enzyme inhibition

and induction studies because they are highly sensitive and suitable for rapid screening. 7-Methoxy-4-trifluoromethylcoumarin

(MFC) has been reported as a CYP2C9-selective substrate. The present study investigated the relative catalytic selectivity of several

human P450s in the O-demethylation of MFC and the applicability of MFC as a probe substrate for CYP2C9. The CYP2C9-

selectivity in liver microsomes was not supported by the correlation analysis within a series of microsomes from individual donors or

by studies using chemical inhibitors. MFC O-demethylation of microsomes did not correlate with tolbutamide 4-hydroxylation,

the classical CYP2C9-marker activity, suggesting the possible participation of some of the other P450s. Results of inhibition studies

using model P450 inhibitors also brought the CYP2C9-selectivity of MFC O-demethylation into question. In microsomes contain-

ing cDNA-expressed individual P450s, CYP2B6 and CYP2E1 seemed to be the most active in the O-demethylation of MFC. Our re-

sults support the participation of several P450 enzymes (CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2E1 and CYP3A4) in MFC

O-dealkylation. Therefore, MFC cannot be considered a suitable probe substrate in models that express several P450s, such as liver

microsomes or primary hepatocytes. Moreover, MFC is a more potent fluorogenic substrate for CYP2B6 and CYP2E1 than for

CYP2C9 in microsomes containing cDNA-expressed P450s.
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Introduction

Cytochrome P450 (P450) enzymes are major partici-

pants in the oxidative metabolism of a wide range of

structurally diverse xenobiotics, including drugs, pes-

ticides and food additives. Members of the P450 su-

perfamily, which are enzymes of CYP1-3, are respon-

sible for the metabolism and disposition of more than

90% of the commercially available therapeutics [20].

The different P450s vary in terms of their catalytic

specificity, regulation of expression and sensitivity to

inhibitors [16, 21]. The inhibition or the induction of

P450 enzymes by a xenobiotic can alter the patient’s
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response to foreign compounds that may result in

changes in the pharmacological or toxicological ac-

tion. Therefore, it is of great clinical interest to study

and better understand the metabolic drug interactions

as a side effect of drug therapy. Increased blood levels

of a drug in patients as a consequence of drug interac-

tions may cause unexpected toxic side effects,

whereas the increased elimination of a drug leads to

the loss of the pharmacological effect [34]. Early pre-

diction of the clinically significant drug interactions

of a drug candidate may contribute to the reduction of

adverse effects.

Investigations of P450 catalytic activity usually in-

volve the conversion of the isoform selective sub-

strates to the respective metabolites. Selective enzyme

assays provide a useful tool in the in vitro measure-

ments of individual P450 activities. There are several

molecules available as selective probes for individual

P450s; however, most of the metabolite detection

methods involve laborious HPLC separations [6, 10].

Fluorescence-based methods offer highly sensitive

and rapid assays for in vitro drug interaction studies

that do not require metabolite separation, which al-

lows for the parallel monitoring of large reaction ar-

rays on plate readers, thus enhancing the sample

throughput. These methods use non-fluorescent sub-

strates that are metabolized by P450s to fluorescent

metabolites [7]. The catalytic selectivity of P450s to-

ward several fluorogenic substrates has been proven

and their utility has been confirmed using both

cDNA-expressed P450s and liver microsomes.

CYP2C enzymes play an important role in the oxi-

dative metabolism of several drugs, such as warfarin,

diclofenac, proguanil, (S)-mephenytoin, and proton

pump inhibitors (e.g., omeprazole, pantoprazole) [21].

Human CYP2Cs account for about 20% of the hepatic

P450 enzymes and contribute to the metabolism of

more than 20% of the drugs on the market. As with all

major drug metabolizing enzymes, co-administration

of known substrates or inhibitors is a major source of

adverse drug interaction events among drugs princi-

pally eliminated by the CYP2C subfamily. CYP2C9

is one of the most abundant CYP2Cs and is involved

in a number of clinically-significant drug interactions

[23]. A number of reactions have been suggested as

a selective probe for the CYP2C9 enzyme, such as

tolbutamide 4-hydroxylation [24], diclofenac 4’-hy-

droxylation [19], and (S)-warfarin 7-hydroxylation

[28]. These CYP2C9-marker assays require time and

labor-intensive analytical procedures, which limit the

sample throughput.

Donato et al. [11] and Crespi et al. [9] have de-

scribed several fluorescence assays for rapid measure-

ments of P450 activities in intact cells or in micro-

somes containing individual P450 isoforms. The as-

says are based on the direct incubation of monolayers

of cells or microsomes that contain cDNA-expressed

P450s with a fluorogenic substrate followed by fluo-

rometric quantification of the product formed. 7-Me-

thoxy-4-trifluoromethylcoumarin (MFC) has been re-

ported to be a marker substrate for CYP2C9 [9]. In

the present work, we aimed to determine both the

relative catalytic selectivity of several human P450s

during O-demethylation of MFC (Fig. 1) and the ap-

plicability of MFC as a probe substrate for CYP2C9.

Materials and Methods

Chemicals

�-Naphthoflavone, 8-methoxypsoralen, sulfaphenazole,

tranylcypromine, quinidine, diethyl-dithiocarbamate,

ketoconazole, pentoxyresorufin, mephenytoin, chlorzo-

xazone, midazolam, nifedipine, MFC and its metabolite,

7-hydroxy-4-trifluoromethylcoumarin were purchased

from Sigma-Aldrich Chemie GmbH (Deisenhofen, Ger-

many). Coumarin, D-glucose-6-phosphate, D-glucose-

6-phosphate dehydrogenase, methanol, dichlorometh-

ane, and acetonitrile of HPLC grade were obtained from

Merck (Darmstadt, Germany). Tolbutamide was from

Research Biochemicals International (Natick, MA,

USA). All other chemicals used in this study were from

Reanal Finechemical Co. (Budapest, Hungary).

Preparation of human liver microsomes

Human liver tissues from kidney transplant donors

were from the Transplantation and Surgical Clinic,

Semmelweis University (Budapest, Hungary). Per-
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Fig. 1. 7-Methoxy-4-trifluoromethylcoumarin (MFC) O-demethylation



mission of the Hungarian Regional Committee of Sci-

ence and Research Ethics was obtained to use human

tissues for scientific purposes. Human liver tissues

were homogenized in a 0.1 M Tris-HCl buffer (pH

7.4) containing 1 mM EDTA and 154 mM KCl. The

hepatic microsomal fraction was prepared by differ-

ential centrifugation [35]. All procedures of prepara-

tion were performed at 0–4°C. Protein content of mi-

crosomes was determined by the method of Lowry et

al. [22], using bovine serum albumin as the standard.

Microsomal P450 enzyme assays

Published methods were followed to determine the

following selective enzyme activities: coumarin 7-hy-

droxylation for CYP2A6 [27], mephenytoin N-deme-

thylation for CYP2B6 [15], tolbutamide 4-hydroxyla-

tion for CYP2C9 [24], mephenytoin 4’-hydroxylation

for CYP2C19 [31], chlorzoxazone 6-hydroxylation

for CYP2E1 [26], nifedipine oxidation [13], midazo-

lam 4- and 1’-hydroxylation [18] for CYP3A4/5. The

incubation mixture contained the NADPH-generating

system (1 mM NADPH, 10 mM glucose 6-phosphate,

5 mM MgCl2 and 2 units/ml glucose 6-phosphate-

dehydrogenase), human liver microsomes and the

various selective substrates for P450 forms (couma-

rin, mephenytoin, tolbutamide, chlorzoxazone, mida-

zolam or nifedipine). P450 enzyme assays were per-

formed in triplicate and the rates of enzyme activities

were determined under linear conditions for the mi-

crosomal protein concentration and for the incubation

time. Reactions were terminated by the addition of

ice-cold methanol. HPLC and fluorometric analyses

were performed according to published methods [13,

15, 18, 24, 26, 27, 31].

Determination of MFC O-demethylation activity

MFC O-demethylation activity was determined in hu-

man liver microsomes from thirty-two donors and in

microsomes containing cDNA-expressed P450 en-

zymes (Supersomes CYP2A6, CYP2B6, CYP2C9,

CYP2C19, CYP2E1, CYP3A4 obtained from BD

Bioscience, Woburn, MA, USA). The incubation mix-

ture contained the NADPH-generating system (1 mM

NADPH, 10 mM glucose 6-phosphate, 5 mM MgCl2
and 2 units/ml glucose 6-phosphate-dehydrogenase),

human liver microsomes or cDNA-expressed P450s

and MFC at various concentrations (3.25–100 �M).

After incubating for 10 to 30 min, the reactions were

terminated by the addition of ice-cold methanol. The

amount of 7-hydroxy-4-trifluoromethylcoumarin pro-

duced was determined by fluorometric analysis at an

excitation wavelength of 405 nm and an emission

wavelength of 535 nm using an RF-5301PC fluorome-

ter (Shimadzu, Kyoto, Japan). Kinetic data were calcu-

lated according to the procedures by the graphical

analysis of Hanes’ plots and the results are expressed as

the mean ± SD of three independent experiments.

Inhibition studies

Inhibition of MFC O-demethylation was carried out

in the absence or presence of various P450 inhibitors

(�-naphthoflavone for CYP1A2, 8-methoxypsoralen

for CYP2A6, pentoxyresorufin for CYP2B6, sulfa-

phenazole for CYP2C9, tranylcypromine for CYP2C19,

quinidine for CYP2D6, diethyl-dithiocarbamate for

CYP2E1, ketoconazole for CYP3A4/5) [3, 25, 29].

For those P450 inhibitors that were able to signifi-

cantly decrease MFC O-demethylation, the Ki values

(inhibition constants) were determined by using differ-

ent concentrations of MFC and inhibitors (0.1–200 �M).

The Ki values were calculated from Dixon plots of

velocity–1 versus inhibitor concentration at the three

MFC concentrations. The apparent Ki values were es-

timated from the intercept of the three lines of Dixon

plots and expressed as the mean ± SD of the intercepts.

Statistical analysis

Correlation analyses between hepatic microsomal

P450 activities and MFC O-demethylation were per-

formed by GraphPad InStat software, version 3.05

(GraphPad Software, San Diego, CA). Statistically

significant contribution of respective P450 activity to

MFC O-demethylation was considered if the p value

of multiple correlation analysis was lower than 0.01.

Results

The main goals of the present study were to investi-

gate both the catalytic selectivity of CYP2C9 and the

relative contribution of human P450s to MFC O-de-

methylation. Our further aim was to estimate the ap-

plicability of MFC as a fluorogenic probe substrate

for CYP2C9, using human liver microsomes and re-

combinant enzymes.
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Michaelis-Menten kinetics of MFC

O-demethylation

Michaelis-Menten kinetic parameters for the fluores-

cence assay of MFC O-demethylation were deter-

mined using human liver microsomes. MFC was in-

tensively demethylated with an apparent Km value of

7.76 ± 0.73 �M in human liver microsomes. The

Michaelis-Menten constant for hepatic microsomes

was much lower than for microsomes containing

cDNA-expressed CYP2C9 (55 �M [33]) or in cells

expressing CYP2C9 (50.7 �M [11]). The maximal

rate of MFC O-demethylation, determined in the he-

patic microsomes of thirty-two human donors, was

found to be 778.5 ± 471.4 pmol/mg protein/min

(range: 164.6–2173.1 pmol/mg protein/min).

Involvement of various P450 enzymes in

O-demethylation of MFC

To estimate the involvement of P450 enzymes in

MFC O-demethylation, we followed the following

three approaches: i) a series of P450-selective inhibi-

tors was examined with MFC O-dealkylation, ii) cor-

relation analyses between MFC O-demethylation and

classical P450 marker reactions were performed in

human liver microsomes from thirty-two donors, and

iii) MFC biotransformation was investigated in mi-

crosomes containing cDNA-expressed individual P450s

(Supersomes).

The participation of P450 enzymes in MFC O-de-

methylation was determined using well known chemi-

cal inhibitors selective for P450 enzymes. A signifi-

cant decrease in MFC O-demethylation was observed

in the presence of sulfaphenazol, which is selective

for CYP2C9. This is fairly consistent with the preced-

ing studies that reported MFC to be a probe substrate

for CYP2C9 [9]. However, 8-methoxypsoralen (for

CYP2A6), pentoxyresorufin (for CYP2B6), tranylcy-

promine (for CYP2C19), diethyl-dithiocarbamate (for

CYP2E1), and ketoconazole (for CYP3A4/5) were

also able to substantially reduce the microsomal MFC

O-demethylation activity. The inhibition constants

(apparent Ki values) of these compounds were found

to be in a micromolar range similar to that of sul-

faphenazole (Tab. 1). The inhibition of CYP1A2 and

CYP2D6 (by �-naphthoflavone and quinidine, re-

spectively) had no effect on the O-demethylation step

of MFC metabolism. These results indicate the in-

volvement of several P450s (CYP2A6, CYP2B6,

CYP2C9, CYP2C19, CYP2E1 and CYP3A4/5) in mi-

crosomal MFC O-demethylation. It should be noted

that a high concentration of diethyl-dithiocarbamate

(> 100 �M) also inhibits other P450s (CYP1A2,

CYP2A6, CYP2B6 and CYP3A4). However, decreas-

ing the concentration of diethyl-dithiocarbamate to

10 �M leads to the inhibition of CYP2A6 and

CYP2B6 [5]. Therefore, additional studies were re-

quired to evaluate whether the inhibition of MFC

O-dealkylation by diethyl-dithiocarbamate indicates

the participation of CYP2E1 or/and some other P450s

(e.g., CYP2A6, CYP2B6).

Tab. 1. Inhibition of MFC O-demethylation by selective P450 inhibitors

Inhibitor Ki value (�M)

�-Naphthoflavone (CYP1A2) no inhibition

8-Methoxypsoralen (CYP2A6) 17.62 ± 5.935

Pentoxyresorufin (CYP2B6) 12.31 ± 6.89

Sulfaphenazole (CYP2C9) 4.14 ± 2.835

Tranylcypromine (CYP2C19) 15.31 ± 2.994

Quinidine (CYP2D6) no inhibition

Diethyl-dithiocarbamate (CYP2E1) 11.46 ± 1.242

Ketoconazole (CYP3A4/5) 15.77 ± 6.263

Microsomal enzyme assays with substrates that are

selective for the individual P450s (coumarin 7-hydroxy-

lation of CYP2A6, mephenytoin N-demethylation for

CYP2B6, tolbutamide 4-hydroxylation for CYP2C9,

mephenytoin 4-hydroxylation for CYP2C19, chlor-

zoxazone 6-hydroxylation for CYP2E1, nifedipine

oxidation, midazolam 1’- and 4-hydroxylation for

CYP3A4/5) were used to characterize the human en-

zymes that are responsible for the majority of oxida-

tive drug metabolism. MFC O-demethylation activity

and P450 selective marker reactions were compared

in a panel of liver microsomes from thirty-two indi-

vidual donors. The O-dealkylase activity for MFC did

not display a strong correlation (r = 0.5461) with tol-

butamide 4-hydroxylation, which is considered to be

the marker reaction of CYP2C9 (Fig. 2A) [24]. On the

other hand, the results of simple correlation analysis

predicted a significant correlation between MFC O-de-

methylation and mephenytoin N-demethylation activ-

ity of CYP2B6 or chlorzoxazone 6-hydroxylation of

CYP2E1 (r > 0.75, p < 0.0001) (Fig. 2). Although

a statistically significant correlation was also ob-

served between MFC O-dealkylation and midazolam
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1’-hydroxylation of CYP3A4/5, the other CYP3A4/5

activities (midazolam 4-hydroxylation and nifedipine

oxidation) did not correlate with MFC O-demethyl-

ation. These findings were confirmed by the results of

multiple correlation analyses accounting for the po-

tential participation of all P450s investigated. Since

the overall p value of the multiple correlation model

was extremely low (p < 0.0001), the question arose

which individual P450 activity was influencing MFC

O-dealkylation. Significant contributions of CYP2B6

and CYP2E1 to MFC O-demethylation were indi-

cated by the multiple model (p < 0.01). Although ke-

toconazole (selective for CYP3A4) inhibited MFC

O-demethylation at a Ki of 15.77 �M, the results of

the correlation analysis did not support the significant

contribution of CYP3A4. The results of MFC O-de-

alkylation in cDNA-expressed P450 enzymes also as-

sumed that the participation of CYP3A4 in this reac-

tion was rather questionable.

With the use of the panel of cDNA-expressed hu-

man P450 enzymes, MFC was found to be demethy-

lated with the highest turnover number (12.74 ± 0.92 /

min) by CYP2B6 (Fig. 3). However, MFC did not

seem to be selective for CYP2B6. cDNA-expressed

CYP2E1 and CYP2C19 showed some preference for

MFC, but these enzymes metabolized MFC at a rate

about four to six times lower than observed for

CYP2B6. Although CYP2C9 could also O-dealkylate

MFC, it did not seem to be efficient in MFC metabo-

lism (0.31 ± 0.026 / min). Furthermore, MFC was

hardly considered to be a high affinity substrate for

cDNA-expressed CYP2A6 and CYP3A4. The results

976 Pharmacological Reports, 2008, 60, 972–979
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Fig. 3. MFC O-demethylation activity of cDNA-expressed P450s



obtained in microsomes containing cDNA-expressed

individual P450s confirmed some of the findings of

in vitro inhibition studies and of the following corre-

lation analyses: i) MFC was found to be a nonselec-

tive P450 substrate; ii) CYP2B6 and CYP2E1 potently

contributes to MFC O-demethylation; iii) and our ob-

servations did not support a primary role for CYP2C9

in MFC O-dealkylation.

Discussion

Analysis of P450-mediated drug metabolism and drug

interactions has become one of the early tasks in the

drug development processes. Various in vitro assay

methodologies have been developed to estimate meta-

bolic drug interactions [6, 10]; however, these require

time- and labor-intensive analytical tools, such as

HPLC (UV) or LC-MS, which present a major limita-

tion to their use in high-throughput P450-inhibition

studies [14, 17]. Assays that make the use of P450

specific substrates that produce fluorescent metabo-

lites, do not require metabolite separation and facili-

tate higher sample throughput. In connection with

this, an important question may arise whether fluore-

scence-based assays can offer a reliable replacement

of the conventional P450-selective marker reactions.

Fluorometric assays for CYP1As and CYP2Bs using

O-alkyl derivatives of resorufin [4] or coumarin for

CYP2A6 [27] have been reported to be useful probes

for this purpose. Attempts have been made to develop

novel fluorogenic substrates for CYP2C9, CYP2D6

and CYP3A4 [8]. Some probes (e.g., 3-[2-(N,N-di-

ethyl-N-methylamino)ethyl]-7-methoxy-4-methylcou-

marin selective for rat CYP2D2 or human CYP2D6)

can be used in heterogeneous enzyme systems, such

as liver microsomes or primary cultures of hepatocytes,

whereas 7-benzyloxyquinoline or 7-benzyloxy-4-tri-

fluoromethylcoumarin are suitable for high through-

put testing of CYP3A4 only in microsomes which in-

dividually express recombinant P450 enzymes [32].

Several authors [1, 2, 12, 33] applied MFC O-de-

alkylation as a marker reaction for human CYP2C9 in

enzyme kinetic or high throughput inhibition studies.

The applicability of MFC for high throughput screen-

ing has been proposed, although with some limita-

tions. MFC O-demethylation has been reported to be

catalyzed by CYP2C9 in microsomes containing

cDNA-expressed P450 [12, 33] or in intact cells ex-

pressing individual P450s [11]. CYP2E1 has also

been assumed to contribute to O-demethylation of

MFC; however, the Km value for CYP2E1 seems to be

much higher (approximately 200 �M) than for

CYP2C9 (55 �M) [33]. The present work describes

the relative selectivity of MFC towards human P450s

in liver microsomes and estimates the contribution of

various P450 isoforms to MFC O-dealkylation.

The reliability of MFC O-demethylation as a fluoro-

genic probe for CYP2C9 was determined by several

approaches, including the use of biological systems of

human liver microsomes and cDNA-expressed indi-

vidual P450 enzymes. The effect of chemical inhibi-

tors that are selective for major drug-metabolizing

P450s was tested in human liver microsomes [3, 25,

29]. MFC O-demethylation and P450 marker activi-

ties for correlation analysis were also performed using

the heterogeneous enzyme system. Furthermore,

MFC O-dealkylation was investigated in microsomes

containing cDNA-expressed individual P450s. The

results of P450 inhibition studies supported the poten-

tial participation of several P450 enzymes (CYP2A6,

CYP2B6, CYP2C9, CYP2C19, CYP2E1 and

CYP3A4/5) in MFC O-dealkylation in human liver

microsomes. This data suggested that MFC O-demeth-

ylation activity cannot be considered a selective fluo-

rescent marker reaction for CYP2C9 in biological

systems expressing several P450s. Correlation analy-

sis between MFC O-demethylation and classical P450

marker activities provided further evidence for the

contribution of CYP2B6 and CYP2E1, whereas some

slight contribution of CYP2A6, CYP2C9 and CYP3A4/5

might be assumed.

Fairly good agreement with the results of inhibition

studies and correlation analysis between MFC O-de-

methylation and classical P450 marker reactions us-

ing liver microsomes was found for MFC metabolism

by cDNA-expressed CYP2B6 and CYP2E1. CYP2B6

seemed to be the most active in MFC O-demethyl-

ation. CYP2E1 and CYP2C19 also contributed to MFC

metabolism to some extent; however, the results ob-

tained in microsomes expressing individual P450s did

not confirm the effective participation of CYP2C9

and CYP3A4. In liver microsomes, MFC O-demethyl-

ation by an individual isoform depends on both the

catalytic activity and the relative contribution of the

isoform to the total P450 content [30]. We attempted

to roughly estimate the contribution of P450 isoforms

to MFC O-dealkylation in liver microsomes on the

basis of enzyme activities in cDNA-expressed Super-
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somes (Tab. 2). Accordingly, the contribution of

CYP2E1 to the O-demethylation in liver microsomes

was relatively greater than that of CYP2B6, even if

the catalytic activity of CYP2B6 was higher than that

of CYP2E1. In regards to the other investigated P450

isoforms, CYP2C9 and CYP2C19 contributed to

a lesser, but not negligible degree. Since the results of

the inhibition studies did not indicate the participation

of CYP1A2 and CYP2D6 in MFC O-demethylation,

the relative contribution of these enzymes were not

taken into account. Although the estimation of the

relative contributions of various P450s could be

considered rather rough, the main player(s) in MFC

O-dealkylation could be identified.

In conclusion, our findings suggest that MFC cannot

be considered to be a selective substrate for human

CYP2C9. Nonselective substrates are not appropriate

for in vitro models expressing several P450s, such as

liver microsomes or primary hepatocytes. This limita-

tion can be addressed by the use of individually ex-

pressed P450 enzymes, although MFC did not seem to

be a high affinity substrate for CYP2C9. Our results

verify that several P450s are involved in MFC O-de-

methylation. Moreover, CYP2E1 may be considered as

the primary catalyst. In the aggregate, it is possible to

use MFC as a fluorogenic substrate for CYP2B6 and

CYP2E1 in systems expressing individual P450s; MFC

O-demethylation, however, does not seem to be appli-

cable for studies in heterogeneous systems.
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