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Abstract:

The repeated administration of dopamine receptor agonists produces a progressive increase in the acute behavioral effects of these

drugs, known as behavioral sensitization. These includes the development of impulsive aggressive behavior after repeated small

doses of apomorphine. The aim of this investigation was to study the behavioral specificity of the apomorphine-induced aggressive-

ness model and its possible relationship with changes in the D2 receptor-G-protein interaction. Apomorphine (1 mg/kg, sc) was ad-

ministered daily for three weeks to two groups of male Wistar rats. One of the groups was repeatedly tested for the development of

aggressiveness. Apomorphine aggressiveness developed stepwise with repeated behavioral testing. Neither apomorphine-treated

group displayed any behavioral change in the open field test, forced swimming test, or quipazine-induced wet-dog shake response

test. Three weeks of apomorphine administration in the home cage increased the GDP binding affinity and reduced the [35S]GTP�S

binding in striatal membranes, but this effect was not present in apomorphine-treated rats that had developed aggressiveness. In con-

clusion, sensitization to apomorphine, as measured by the expression of aggressiveness, developed only with accumulating

apomorphine-induced fighting, was behaviorally specific, and appeared to be dependent on the D2 receptor-G-protein interaction.

The absence of sensitization to the dopaminergic stimulation may be mediated by the downregulation of D2 receptor sensitivity via

changes in the GDP affinity of G-proteins.
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Introduction

The repeated administration of direct or indirect dopa-

mine receptor agonists produces a progressive increase

in the acute behavioral effects of drugs, an effect

known as behavioral sensitization [15, 20]. Behav-

ioral sensitization can be manifested in a number of

ways, including complex behaviors such as the ex-

pression of aggressiveness, which is induced by re-

peated small doses of apomorphine. Although the

phenomenon of apomorphine-induced aggressive be-

havior in rats has been known for over two decades,

its neurobiology is still unclear. Evidence indicates

the involvement of the mesocorticolimbic dopamine

system [15]. Rowlett et al. [34, 35] reported that basal

dopamine synthesis was enhanced and that changes in

dopamine metabolism were induced by repeated apo-

morphine treatment. Another obvious mechanism in

the development of sensitization to dopamine agonists

is dopamine receptor stimulation [16, 19, 27], sug-

gesting that repeated treatment with agonists results in

persistent changes at the dopamine receptor level. In

addition, Mattingly et al. [21, 23] demonstrated that

the development of behavioral sensitization to apo-

morphine appears to require repeated stimulation of

D1 receptors. However, the findings have been contra-

dictory with regards to the D2 receptors. The repeated

administration of cocaine leads to the marked subsen-

sitivity of D2 autoreceptors [11, 18] and an increase of

the basal activity of the ventral tegmental area dopa-

mine neuron population [11]. Matto and Allikmets

[24] reported that apomorphine-induced aggressive

male rats have higher [3H]raclopride-binding to dopa-

mine D2 receptors in the striatum. However, in other

works, the repeated administration of dopamine ago-

nists did not change the parameters of striatal dopa-

mine D2 receptors in mice and rats [13, 17, 30]. Fur-

themore, repeated apomorphine treatment has been

found to cause behavioral supersensitivity in associa-

tion with reduced dopamine D2 receptor binding in

striatum as measured by [3H]haloperidol [5]. G-protein

coupling has been proposed to play an important role

in the development of dopamine supersensitivity [38],

but its role in apomorphine aggressiveness is not known.

Herein, we studied whether the repeated admini-

stration of small doses of apomorphine and the devel-

opment of apomorphine aggressiveness are associated

with changes in D2 receptor-mediated signal transduc-

tion. We also investigated whether behavioral changes

after repeated apomorphine treatment are associated

with differences in locomotor activity.

Therefore, the aim of present study was to charac-

terize the apomorphine-induced aggressiveness model

with other behavioral measures to investigate its be-

havioral specificity.

Materials and Methods

Animals

Adult male Wistar rats (from Kuopio National Animal

Center, Kuopio, Finland) weighing 400–500 g were

used in all of the experiments. At the time of the be-

havioral tests, the animals were about 8 months old

(± 2 weeks). Animals were single-housed under stan-

dard laboratory conditions (water and food were

available ad libitum, temperature 20 ± 2°C and lights

on from 8:00–20:00 h). There were 10–12 animals in

the drug treatment group, and 4 rats used for the bind-

ing studies. The experimental protocol was approved

by the Ethics Committee of the University of Tartu.

Drugs

Apomorphine (1 mg/kg) (Reakhim, Krasnoyarsk,

Russian Federation) was dissolved in distilled water

containing 0.01% L-ascorbic acid and stored as a stock

solution at +4°C. Immediately before an experiment,

the apomorphine stock solution was diluted with dis-

tilled water and injected (1 mg/kg sc, once daily).

Quipazine maleate (2.5 mg/kg ip) was from RBI Che-

micals, Natick, MA, USA. Guanosine-5’-(�-thio)-tri-

phosphate ([35S]GTP�S) was purchased from Perkin

Elmer Life Sciences, USA, and guanosine diphosphate

sodium salt (GDP), (+)-butaclamol hydrochloride and

3-hydroxytyramine hydrochloride (dopamine) were

from Sigma-Aldrich Fine Chemicals, USA.

Apomorphine-induced aggressiveness test

The apomorphine-induced aggressiveness study was

performed as described previously [29]. Experimen-

tally naive (n = 33) animals were singly placed into

standard polycarbonate, semitransparent cages held in

stainless steel racks, and on the next day the apomor-

phine treatment was started. After an injection, the

animals were either immediately tested for aggres-
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siveness as described below or returned to the home

cage. The same animal pairs were used throughout the

experiment and were always picked from neighboring

cages. The apomorphine treatment lasted for three

weeks during which the aggressiveness was scored

four times.

The aggressive behavior was measured in cages

(35 × 35 × 55 cm, length × width × height) with trans-

parent plastic sidewalls and a stainless steel floor,

which was covered with wood shavings. Immediately

after apomorphine injection, rats were placed pairwise

in the test cage and observed from the time of the la-

tency to the first aggressive posture or the first attack.

The intensity of the aggressiveness was also moni-

tored. The animals were observed for 15 min, and the

intensity of aggressiveness was scored on a 0–3 point

scale (modified from [1]): 0 – no aggressive manifes-

tations; 1 – intermittent mild aggressive posture or at-

tack of the other rat, no vocalizations; 2 – intermittent

intensive upright aggressive posture or attack or box-

ing with the other rat, vocalizations, but no biting or

continuous fighting; 3 – continuous fighting or at-

tempts to bite the opponent rat, loud vocalizations.

When the rats developed of the highest level of ag-

gressiveness, the test was immediately terminated to

avoid injuries.

To compare the effect of the chronic apomorphine

treatment, the animals were divided into three groups.

The effect of the repeated vehicle (1 ml/kg) and apo-

morphine treatment on the development of aggres-

siveness was measured on the 3rd, 6th, 9th, and 12th

days. To assess the apomorphine treatment in the

home cage group, aggressive behavior was measured

once on the 12th day.

The other behavioral measures were recorded 24 h

after the end of the apomorphine-induced aggressive-

ness tests, and there was one test per day (on the 13th,

14th, 15th, and 16th days). Apomorphine was admin-

istered after the behavioral test. The same animals

were used to study the behavioral measures as in the

apomorphine-induced aggressiveness test.

Open field test

The open field was a 50 × 100 cm metal quadrate

arena with 40 cm sidewalls. The surface of the floor

was divided into eight squares of equal size. Rats

were placed into the center of the arena and observed

for four minutes for (1) horizontal (number of line

crossings) and (2) vertical activity (number of rears).

Forced swimming test

The forced swimming procedure [28] was carried out

as previously described [12]. Briefly, rats (10–12 per

group) were placed individually in a vertical glass

cylinder (� 20 cm; height 40 cm) containing water

(25 ± 2°C) with a level high enough to prevent the rats

from supporting themselves by their hind legs or tail.

In the first session, the rats were forced to swim for 15

min. After this, the rats were dried with laboratory tis-

sues, and the apomorphine groups received their treat-

ment. In the second session, which was 24 h later, the

rats were re-exposed to the forced swimming for

5 min. The behavior in the forced swimming test on

both days was recorded on videotape. Furthemore, the

duration of immobility, swimming and climbing was

measured during the first 5 min of the test on both

days, based on behavioral categories as described by

Page et al. [26] and Detke et al. [9]. A rat was judged

to be immobile whenever it remained floating pas-

sively in the water in a slightly hunched but upright

position, with its head just above the surface. The rat

was described to be climbing when it was making ac-

tive movements with its forepaws in and out of the

water, usually directed against the wall. The time

spent swimming was recorded when the rat was mak-

ing active swimming motions that were more than

necessary to merely maintain its head above the water

(e.g., moving around the cylinder).

Quipazine-induced wet-dog shake test

Head twitches were induced by quipazine, a mixed

5-HT2A/3 receptor agonist [41]. Quipazine-induced

wet-dog shakes were observed in individual polycar-

bonate cages (20 × 14 × 20 cm, floor covered with

wood shavings). Immediately after the administration

of quipazine (2.5 mg/kg, ip), the animals were placed

into the individual test cage, and the number of wet-

dog shakes was observed for 60 min. Latency to the

first wet-dog shake was also recorded.

[35S]GTP�S binding assay

Twenty-four hours after the last injection of apomor-

phine, the animals were decapitated, and the brains were

quickly removed and prepared on an ice-cold plate. The

brain samples were stored at –80°C until assayed.

For biochemical experiments, the rat striatal mem-

branes were prepared as described previously [19].
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Brain tissue samples were homogenized by sonication

in 100 vol (ww/v) of ice-cold homogenization buffer

(50 mM Tris-HCl, pH 7.4). The membranes were col-

lected by centrifugation at 25,000×g for 20 min at 4°C

and washed two times by homogenization and cen-

trifugation. The final pellets were homogenized in

90 vol (ww/v) of the incubation buffer (20 mM

K-Hepes, 7 mM MgCl2, 100 mM NaCl, 1 mM EDTA,

1 mM DTT, pH 7.4) and were used directly for bind-

ing experiments. Binding of [35S]GTP�S was carried

out as previously described [31] with slight modifica-

tions. In brief, the membranes (500 �g per tube) were

incubated with 0.2 nM [35S]GTP�S and different con-

centrations of GDP (3 mM – 1 �M) in the presence of

100 �M dopamine or 10 �M butaclamol for 90 min at

30°C, and the reactions were terminated by rapid fil-

tration through GF/B filters using a Brandel cell har-

vester with three washings of 5 ml of ice-cold washing

buffer (20 mM NaK phosphate buffer, 100 mM NaCl,

pH 7.4).The radioactivity content of the filters was

counted in 5 ml of OptiPhase HiSafe®3 (Wallac Perkin

Elmer Life Sciences, Cambridge, UK) scintillation

cocktail by a Beckman LS 1800 scintillation counter.

Statistical analysis

All binding data were analyzed by nonlinear least-

squares regression analysis using Graph Pad PRISM

4.03 (GraphPad Software, San Diego, USA). The data

were subjected to an analysis of variance (ANOVA)

and to a Student’s t-test with data from the develop-

ment of apomorphine aggressiveness. When a signifi-

cant drug treatment effect or a pretreatment × drug

treatment effect was found, data were further ana-

lyzed using a Fisher’s LSD test. Probability levels

p < 0.05 were considered statistically significant.

Results

Development of apomorphine-induced aggres-

sive behavior

The repeated apomorphine treatment gradually in-

duced aggressive behavior as evidenced by the day-

by-day shortened time of latency and increased inten-

sity of aggressiveness (Fig. 1). In contrast, aggressive

behavior was completely absent in rats that had re-

ceived apomorphine in their home cage.

Effect of apomorphine treatment on forced

swimming and open field behavior

Repeated administration of apomorphine, irrespective

of whether aggressiveness developed or not, did not

affect either the open field activity or any behaviors in

the forced swimming test (data not shown).

Effect of apomorphine treatment on quipazine-

induced wet dog shakes

The number of head shakes reached a plateau during

the 60 min of observation. Neither of the apomorphine-

treated groups differed from the vehicle group (data

not shown).
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Fig. 1. Effect of repeated apomorphine administration on time of
latency and intensity of aggressiveness. C – control animals (�);
AT – apomorphine-treated animals (�), AA – apomorphine-aggres-
sive animals (�). Data expressed as the means ± SEM. * p < 0.05,
*** p < 0.001 vs. control (Fischer’s LSD test)



Effect of chronic apomorphine treatment on

[35S]GTP�S binding

Treatment with apomorphine had an effect on the GDP

binding affinity to striatal membranes [F(2, 10) = 21.6,

p < 0.001]. Thus, two weeks of apomorphine admini-

stration in the home cage increased the GDP binding

affinity, but this effect was not present in apomor-

phine-treated rats, which had developed aggressive-

ness. These differences in GDP affinity were detected

in the presence of 100 �M dopamine (activated recep-

tors, �EC50 = 0.24, n = 4, p = 0.0004) (Fig. 2A) as

well as in the presence of 10 �M butaclamol (blocked

receptors, �EC50 = 0.27, n = 4, p = 0.0002, data not

shown graphically). The effect of dopamine receptor

activation on the GDP affinity was similar in all

groups. In the presence of 100 �M dopamine and

40 �M GDP, lower levels of [35S]GTP�S binding

(�B = 3.5 fmol/mg tissue, n = 4, p = 0.012) were found

in the striatal membranes of apomorphine-treated rats

that did not develop aggressiveness (Fig. 2B).

Discussion

The classic Pavlovian conditioning and environ-

mental (contextual) cues seem to play important roles

in the development of apomorphine-induced sensiti-

zation [4] elicited by a large dose of apomorphine.

Apomorphine has been reported to be effective in in-

ducing intraspecific aggression in rats, and the ob-

served level of fighting behavior increased with re-

peated drug-fight experiences [10]. In the present ex-

periment, repeated apomorphine treatment caused

a step-by-step development of aggressiveness, which

concurs with previous studies [17, 36, 37]. The

apomorphine-induced aggressiveness developed with

repeated apomorphine treatment only with fighting

experience, which also agrees with prior results [10].

Locomotor sensitization has been demonstrated after

repeated treatments with apomorphine [8, 20, 22, 40].

Dopamine receptor agonists enhanced the effects of

antidepressants in the forced swimming test [14, 33],

and several dopaminomimetic drugs induced the

anti-immobility effect in the forced swimming test

with a single treatment, which may be due to an in-

crease in general motor activity [6, 39], or, possibly,

impulsivity [12]. On the other hand, acute administra-

tion of apomorphine reduced the number of wet-dog

shakes [3, 7]. In our experiment, repeated apomor-

phine treatment had no effect in the open field, quipa-

zine-induced wet-dog shakes or forced swimming

tests, irrespective of whether the animals had developed

aggressiveness or not. In the study of Võikar et al. [42]

they found, using the same Wistar rat line, that the

changes in the stereotyped behavior as a consequence

of repeated apomorphine treatment (0.5 mg/kg) do not

correlate with increased locomotor activity. Because

increased locomotor activity is one of the most impor-

tant components, which may precipitate the develop-

ment of aggressiveness, it should be kept in mind that

the changes in the monoamine content found in our

previous study [25] are valid only for the “hight apo-

morphine responders”.

The sensitivity of the dopaminergic signal trans-

duction system is also determined by the efficacy of

receptors coupled to G-proteins. The affinity of GDP

for G-proteins is a key parameter in signal transduc-

tion [32], and changes in this may affect the receptor

sensitivity. For example, the 6-hydroxydopamine-

induced unilateral lesions of the nigrostriatal system,

which elicited a prolonged loss of dopamine nerve

terminals, caused a decrease in the affinity of GDP for
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Fig. 2. Effect of chronic apomorphine treatment on the regulation of
dopamine-dependent binding of nucleotides. The affinity of GDP (A)
was measured by its ability to inhibit [35S]GTP�S (0.2 nM) binding in
the presence of dopamine (100 µM). The activation of [35S]GTP�S
binding at 40 µM GDP (B) was determined as the difference of
[35S]GTP�S binding in the presence of 100 µM dopamine and 10 µM
butaclamol. C – control animals; AT – apomorphine-treated animals,
AA – apomorphine-aggressive animals. Data expressed as the means
± SEM. * p < 0.05, ** p < 0.01 vs. control (Student’s t-test)



the G-proteins. It is likely that when the affinity of

GDP is lower, fewer receptors are required to activate

the same number of G-proteins, thereby causing the

higher sensitivity of the receptors [38]. In the present

study, the increase in the affinity for GDP appears to

reduce the dopamine receptor sensitivity, resulting

in lower dopamine-stimulated [35S]GTP�S binding

(Fig. 2B). Thus, the chronic administration of the do-

pamine receptor agonist downregulated the D2 receptor

sensitivity by changing the GDP affinity of G-proteins.

Interestingly, this downregulation of sensitivity was

not present when the animals had the possibility to

fight and had developed aggressiveness. This means

that the development of apomorphine aggressiveness

is related to the absence of desensitizaton of dopa-

mine D2 receptors due to the missing changes at the

level of G-proteins. What limits the development of

this alteration when the animals have the regular

fighting experience remains to be elucidated. Interest-

ingly, we observed a similar association in rats pre-

selected on the basis of their exploratory activity and

given low doses of amphetamine. In rats that did not

develop locomotor sensitization to amphetamine, there

was a decrease in D2 receptor-dependent [35S]GTP�S

binding, whereas such a decrease did not occur in rats

sensitized to amphetamine [2].

In conclusion, our experiments demonstrate that

apomorphine-induced aggressiveness, which develops

only with accumulating experience of apomorphine-

induced fighting, is unrelated to the sensitivity of

5-HT2 receptors and is not probably related to a non-

specific increase in behavioral reactivity to environ-

mental stimuli. In addition, apomorphine-induced

fighting, appears to be dependent on the D2 receptor-

G-protein interaction, and the absence of sensitization

to dopaminergic stimulation may be mediated by

a downregulation of D2 receptor sensitivity by changes

in the GDP affinity of G-proteins.
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