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Abstract:

The current knowledge on the involvement of cytochrome P450 (P450, CYP) isoforms in the metabolism of caffeine in rat and hu-

man liver is reviewed. Attention is also paid to species- and concentration-dependent metabolism of caffeine. Finally, we discuss the

P450-mediated metabolism of caffeine in relation to coffee addiction and drug interactions.

Due to its safety, favorable pharmacokinetic properties, and P450 isoform-selective metabolism, caffeine has great potential as

a metabolic marker substance in both humans and rats, and as a more universal metabolic tool in the latter species. However, the

qualitative and relative quantitative contribution of P450 isoforms to the metabolism of caffeine is species- and concentration-

dependent. While 3-N-demethylation is quantitatively the main oxidation pathway in human, 8-hydroxylation is the dominant meta-

bolic pathway in rat. Both of these main reactions in the two species are specifically catalyzed by CYP1A2. Caffeine may be applied

as a marker substance for assessing the activity of CYP1A2 in human and rat liver, but by using different reactions: 3-N-deme-

thylation in humans and C-8-hydroxylation in rats. In addition, caffeine can be used to preliminarily and simultaneously estimate

CYP2C activity in rat liver using 7-N-demethylation as a marker reaction. On the other hand, CYP3A4-catalyzed 8-hydroxylation in

humans is not sufficiently isoform-specific to mark the activity of CYP3A4. Caffeine pharmacokinetics may be changed by drugs af-

fecting the activity of CYP1A2 (human and rat) or CYP2C (rat), e.g. via autoinduction or by treatment with certain antidepressants

or neuroleptics. Therefore, patients taking caffeine-containing medicine or coffee drinkers taking drugs that interact with CYP1A2

may require proper dosage adjustments upon caffeine ingestion and cessation.
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Introduction

A marker substrate is devised to provide information

on the in vivo cytochrome P450 (P450, CYP) isoform

activity (phenotyping), its level of induction, inhibi-

tion or drug interactions. It must be characterized by

safety, wide availability, assay reliability in bodily

fluids and, of course, a metabolic pathway specific for

one P450 isoform. Currently, different marker sub-

strates for various isoforms of cytochrome P450 are

widely used to assess genetic, ethnic, and environ-

mental differences in the in vivo metabolism of drugs.

Interestingly, caffeine is the first-choice substrate for

CYP1A2 phenotyping in a selective (CYP isoform-
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specific) phenotyping method, as well as in a ‘cocktail’

phenotyping method with simultaneous administra-

tion of multiple types of CYP isoform-specific marker

substrates [11, 19, 38, 63, 65, 71]. In addition, caf-

feine has proven to be useful for simultaneous estima-

tion of N-acetyltransferase-2 (NAT-2) and xanthine

oxidase (XO) activities [42, 47, 59]. This is not sur-

prising since caffeine is relatively safe and possesses

many favorable pharmacokinetic characteristics for

a marker substrate. Several caffeine-based approaches

for assessing CYP1A2 activity in vivo have been de-

scribed. These approaches have utilized caffeine con-

centrations in plasma or saliva (caffeine clearance), as

well as plasma, saliva, or urinary caffeine metabolite

ratios. Moreover, a 14C-caffeine ‘breath test’ which

serves well for the in vivo estimation of CYP1A2 ac-

tivity has been described [18, 32, 47, 61].

In this article, we review the current knowledge on

the involvement of P450 isoforms in the metabolism

of caffeine in rat and human liver, in order to critically

evaluate caffeine as a marker substance for estimating

the activity of cytochrome P450. We also give atten-

tion to species- and concentration-dependent metabo-

lism of caffeine in regard to the degree of oxidation in

particular positions, as well as the qualitative and

quantitative contributions of P450 isoforms to par-

ticular oxidation pathways. Finally, we discuss the

P450-mediated metabolism of caffeine in relation to

coffee addiction and drug interactions.

Pharmacokinetic profile of caffeine

The ionization constant (pKa) of caffeine is 14 and the

lipid partition coefficient (log P) is 0.85. As a conse-

quence, the molecule exists predominantly as a weak

base in the gastric fluid (pH = 2–3) [60]. The moder-

ate lipophilic character of caffeine allows its passage

through all biological membranes [9, 10]. Following

oral administration, gastrointestinal absorption of caf-

feine is rapid and complete, and reaches 100% bioa-

vailability [1]. No significant first-pass effect occurs

after oral administration [9, 10]. Caffeine is rather

poorly bound to plasma albumin (10–30%) [8, 25]

and its volume of distribution ranges from 0.5 to 0.75

l/kg in human and 0.9 l/kg in rat, which indicates that

the substance distributes into the total body water [1,

9, 10, 14]. It seems that no physiological ‘barriers’

limit the passage of caffeine throughout tissues; con-

sequently, easy and rapid equilibrium is reached be-

tween mother and fetus, blood and all tissues, includ-

ing the brain [13]. Caffeine may enter the brain by

simple diffusion and carrier-mediated transport [55].

It has been found that caffeine and its metabolites are

strong inhibitors of the human organic anion trans-

porter [64] which is expressed in human lungs, kid-

neys, and testes [53], as well as along the blood-

brain-barrier, as shown in cultured human brain endo-

thelial cells [40]. Caffeine has an elimination half-life

of 4 to 5 h, but may have a prolonged elimination in

patients with hepatic diseases, in neonates (to 100 h),

or during pregnancy [21, 36, 48]. Its biotransforma-

tion is mainly restricted to the liver with minimal ex-

trahepatic metabolism (connected with the presence

of CYP1A2) or renal elimination of the unchanged

parent compound (about 3%) [18, 47, 56].

Pharmacodynamic properties of caffeine

Caffeine, a component of coffee, tea, and numerous

drugs, is a purine alkaloid and the most universally

used psychoactive substance. Caffeine acts through

multiple mechanisms, the most important of which is

the antagonism of adenosine receptors (A1 and A2A).

Caffeine blocks adenosine receptors and competi-

tively inhibits the action of adenosine at the therapeu-

tic concentrations of caffeine (10–100 �M), with Ki

of 29 and 48 �M at the A1 and A2A adenosine recep-

tors, respectively. As an adenosine receptor antago-

nist, caffeine increases the release of various neuro-

transmitters [36]. Moreover, due to a negative interac-

tion between adenosine and dopaminergic receptors,

caffeine increases responses from dopaminergic re-

ceptors [37]. Because of its ability to affect neuro-

transmission in different regions of the brain, caffeine

displays psychomotor stimulant properties and pro-

motes behavioral functions such as vigilance, atten-

tion, mood, and arousal [35]. At a higher substrate

concentration (0.1–1 mM), caffeine inhibits the

phoshodiesterase which converts cyclic AMP (cAMP)

in cells to its noncyclic form with a Ki of 0.48 mM.

Moreover, some observations indicate that caffeine at

broad-range concentrations of 0.1 to 2 mM (IC50 =

0.35–0.5 mM) may interact with the �-aminobutyric

acidA receptor complex and inhibit benzodiazepine
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binding. Additionally, caffeine in a wide range of con-

centrations (from 0.1 to 1 mM) inhibits the activity of

5’-nucleotidase in a competitive manner. Sequential

actions of caffeine, such as Ca2+ mobilization, require

concentrations of caffeine from 5 to 15 mM [17, 18,

24, 36].

In recent years, caffeine and newly synthesized

xanthine derivatives have been investigated as adeno-

sine receptor antagonists and neuroprotective drugs in

animal models of neurodegenerative diseases in vivo

[16, 20, 69, 70]. Therefore, the detailed knowledge of

caffeine metabolism is very important, since caffeine

represents not only a metabolic marker substance, but

also a drug with a very interesting pharmacological

spectrum. Both the metabolic and pharmacodynamic

properties of caffeine must be considered in predict-

ing drug-drug interactions in pharmacological experi-

ments with laboratory animals and in clinical condi-

tions. Since the metabolism of caffeine in vivo de-

pends on cytochrome P450, mutual drug interactions

between caffeine and other centrally acting drugs at

both the pharmacodynamic and pharmacokinetic lev-

els are feasible [33].

Metabolism of caffeine

Caffeine (1,3,7-trimethylxanthine) is oxidized at a few

positions of its molecular structure; apart from its

3-N-demethylation to paraxanthine, it undergoes 1-N-

demethylation, 7-N-demethylation, and 8-hydroxyla-

tion (to theobromine, theophylline, and 1,3,7-trime-

thyluric acid, respectively) (Fig. 1). It was shown that

the C-8-hydroxylation of caffeine is the major meta-

bolic reaction in rat liver microsomes (~70%) and

liver slices compared to 1-N- and 7-N-demethylation

(8–9%) and 3-N-demethylation (~13%), when meas-

ured at a substrate concentration of 100 �M [5, 7, 50,

51]. In contrast, 3-N-demethylation was the main oxi-

dation pathway of caffeine in human liver micro-

somes (~70%) compared to 1-N- and 7-N-demethyla-
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Fig. 1. Contribution of cytochrome P450 isoforms to caffeine metabolism in rat and human liver, based on the rate of caffeine metabolism in
cDNA-expressed P450 isoforms and the mean of P450s in the liver [50, 51]. Bold frames show the dominant metabolic pathways of caffeine in
the two species. The main contributing P450 isoforms are presented in a bigger font



tion (7–8%) and 3-N-demethylation (~15%), when

measured at a substrate concentration of 100 �M [5,

50, 51].

The contribution of P450 isoforms

to the metabolism of caffeine in rat liver

For many years, studies on the involvement of P450s

in the metabolism of caffeine in rat were carried out

using high (1–10 mM) substrate concentrations, pre-

dominantly unspecific P450 inducers or inhibitors

[22, 23], and often without including all P450 iso-

forms [39, 57] or all caffeine metabolic reactions [22].

Therefore, it was difficult to identify all the P450 iso-

forms involved in caffeine metabolism; furthermore,

quantitative estimations of the contribution of individ-

ual P450s to the four oxidative metabolic reactions of

caffeine at concentrations relevant to those found in

humans were practically impossible.

Nevertheless, the above studies suggested that

3-N-demethylation of caffeine to paraxanthine was

catalyzed by CYP1A2 [5, 23, 57], while other oxida-

tion pathways of caffeine might be mediated by P450

isoforms different from CYP1A2 [4, 5, 23, 57]. The

CYP3A subfamily was proposed as the main isoen-

zyme catalyzing 8-hydroxylation to 1,3,7-trimethyl-

uric acid [58]. However, other data also suggested the

contribution of CYP2B1 and CYP2E1 to the catalysis

of this reaction in rat [23]. It was also suggested that

1-N-demethylation and mainly 7-N-demethylation,

which led to the formation of theobromine and theo-

phylline, respectively, were likely to engage CYP2B

isoforms in rat [4].

According to the literature, the concentration value

of approximately 100 �M seems to be the highest en-

countered in the clinic situation [18, 48] and may be

considered “the maximum therapeutic concentration

in humans”. Pharmacokinetic studies showed that caf-

feine concentrations found in the blood plasma of cof-

fee drinkers were below 100 �M (usually 10–31 �M)

after the consumption of 2–6 cups of coffee [31, 54].

Using a full set of CYP isoforms (baculovirus cDNA-

expressed rat CYPs), the contribution of individual

CYP isoforms to the metabolism of caffeine, at differ-

ent drug concentrations in rat liver, has recently been

thoroughly investigated and calculated (considering

the relative amount of each isoform in rat liver) [49,

50]. It has become clear that CYP1A2 is a key en-

zyme that catalyzes C-8-hydroxylation (72%) and

substantially contributes to 3-N-demethylation (47%)

and 1-N-demethylation (37.5%) at a caffeine concen-

tration of 100 �M, corresponding to “the maximum

therapeutic concentration in humans”. Furthermore,

CYP2C11 considerably contributes to 3-N-demethyl-

ation (31%), while CYP3A2 facilitates 1-N-demethyl-

ation and 8-hydroxylation (17 and 15%, respectively).

The estimated contribution of P450 isoforms to the

7-N-demethylation of caffeine indicates that the CYP

isoforms, mainly CYP2C6 (27%) and CYP2C11 (29%),

play a major role in catalyzing this reaction [50]. At

a higher substrate concentration (100–800 �M), the

participation of CYP isoforms in the above described

metabolic pathways of caffeine is changed. The con-

tribution of CYP3A2 to C-8-hydroxylation markedly

increases (from 15 to 58%) at the expense of CYP1A2

(a decrease from 72 to 30%). The contribution of

CYP2C11 to 7-N-demethylation increases from 29 to

41%, while that of CYP1A2 shows a decrease (from

14 to 5%). The substantial contribution of CYP2C11

to 7-N-demethylation and – as has been mentioned

elsewhere – to 3-N-demethylation is in line with the

results of our previous study obtained using P450 in-

ducers [49] and with the findings of Bienvenu et al.

[6] who observed a decrease in the rate of these reac-

tions after a continuous infusion of the growth hor-

mone to hypophysectomized male rats. Similarly the

contribution of CYP2C11 to the catalysis of 3-N-de-

methylation and 1-N-demethylation is distinctly en-

hanced (from 31–51% and 6–24%, respectively), while

that of CYP1A2 is significantly decreased (from 47 to

19% and 37.5 to 22.6%, respectively) [50].

The significance of individual P450 isoforms in the

metabolism of caffeine in rat liver observed using

cDNA-expressed P450 isoforms has been confirmed

in a study with rat liver microsomes in the presence of

specific P450 inhibitors, or with liver microsomes af-

ter the treatment of rats with selective inducers [49,

50]. Generally, the results from correlation and inhibi-

tion studies, as well as in vivo studies with selective

P450 inducers, support the conclusions drawn from

the studies with recombinant rat CYP isoforms [49,

50]. In addition, recent investigation indicates that

flavin-containing monooxygenase (FMO) does not

contribute significantly to caffeine metabolism meas-

ured in vitro at a substrate concentration of 100 �M,

as shown by the thermal inactivation of FMO [50].
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The role of P450 isoforms in the

metabolism of caffeine in human liver

Although numerous studies on caffeine metabolism

show that 3-N-demethylation to paraxanthine in hu-

man (the main oxidation pathway) is specifically cata-

lyzed by CYP1A2, they have also suggested that

other oxidation pathways of caffeine may be medi-

ated, at least partly, by P450 isoforms different from

CYP1A2. In experiments with liver microsomes and

CYP1A-specific inhibitors or antibodies, it has been

shown that human CYP1A2 plays a pivotal role in

caffeine metabolism, especially in catalyzing N-de-

methylation reactions [3, 5, 15, 41]. Further studies

with selected cDNA-expressed CYP isoforms, or

CYP1A2 and CYP2E1 cell lines, have indicated that

caffeine 3-N-demethylation is most efficiently cata-

lyzed by CYP1A2, while the CYP3A subfamily is the

main isoenzyme catalyzing C-8-hydroxylation to 1,3,7-

trimethyluric acid. In addition, CYP2E1 may also

contribute to 1-N- and 7-N-demethylation [34, 39, 42, 43,

66, 67]. However, CYP2C isoforms (CYP2C8/9/18/19),

which constitute over 20% of total human liver P450

and play an important role in drug metabolism, were

not studied in this respect for a long time. Recently,

a panel of recombinant human CYP isoforms (bacu-

lovirus cDNA-expressed human CYPs) has allowed

both precise qualitative and relative quantitative esti-

mations of the contribution of individual P450 iso-

forms to the specific metabolic pathways of caffeine

[51]. The results of the above-mentioned studies con-

firmed that CYP1A2 was the main isoform responsi-

ble for caffeine metabolism at the therapeutic concen-

tration of caffeine (100 �M). It has also become evi-

dent that CYP1A2 is the chief enzyme catalyzing

1-N- and 3-N-demethylation (75 and 85%, respec-

tively). It also contributes substantially to 7-N-deme-

thylation (38.7%) and C-8-hydroxylation (28.7%).

Moreover, 7-N-demethylation is also clearly cata-

lyzed by CYP2C8 (12.8%), CYP2C9 (12.2%), and

CYP3A4 (13.6%), while C-8-hydroxylation is sub-

stantially mediated by CYP3A4 (30%) and to a lesser

extent by CYP2C8 (10%), CYP2C9 (8%), and CYP2E1

(11%) [51]. Similar to the results concerning caffeine

metabolism in rat, concentration-dependent oxidation

of caffeine by human cytochrome P450 is also ob-

served, though such an effect is mainly observed for

C-8-hydroxylation. The contribution of CYP1A2 to

C-8-hydroxylation of caffeine is clearly decreased (to

16%), mostly in favor of CYP2C8 and CYP2C9 (to

17 and 11.6%, respectively) at a higher concentration

of the substrate (1 mM). These findings are also con-

firmed by inhibition studies with human liver micro-

somes and specific inhibitors [51].

Interspecies comparison of caffeine

metabolism

The main differences between the metabolism of caf-

feine in rats and humans, lie in the efficiency of 3-N-

demethylation and 8-hydroxylation, as well as quanti-

tative and qualitative contributions of P450 isoforms

to particular oxidation pathways. While 3-N-deme-

thylation is quantitatively the main oxidation pathway

in human, C-8-hydroxylation is the dominant meta-

bolic pathway in rat. Both of these main reactions in

the two species are specifically catalyzed by CYP1A2.

Accordingly, the efficiency of CYP1A2 in metaboliz-

ing caffeine was highest for 3-N-demethylation in hu-

man and 8-hydroxylation in rat, compared to the other

P450 isoforms [50, 51].

For the above reasons, caffeine may be applied as

a marker substance for assessing the activity of

CYP1A2 in both human and rat liver using different

reactions: 3-N-demethylation in human and C-8-hy-

droxylation in rat [50, 51]. Another aspect worth con-

sidering is that caffeine can be used to preliminarily

and simultaneously estimate CYP2C activity in rat

liver using 7-N-demethylation as a marker reaction

[50]. On the other hand, CYP3A4-catalyzed 8-hy-

droxylation in humans is not sufficiently isoform-

specific (30%) to mark the activity of CYP3A4 [51].

The above-mentioned species differences in the

metabolism of caffeine in rat and human liver may

stem from the diverse contribution of individual

P450s to the total content of P450 protein in rat and

human liver, as well as the species variability of P450

isoforms and their catalytic competence.

Induction and inhibition of caffeine

metabolism and drug interactions

Beverages containing caffeine, such as coffee, tea,

and energy drinks enjoy great popularity. A caffeine
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concentration value of approximately 100 �M may be

considered “the maximum therapeutic concentration

in humans”. However, some individuals may con-

sume more than 1 g/day (about 15 mg/kg/day) and

even up to 3.5 g/day (about 50 mg/kg/day) of caffeine

in a caffeinism syndrome which leads to caffeine con-

centrations above 100 �M in their blood plasma [2,

18, 48, 62]. There are some observations that point to

the autoinduction of caffeine metabolism. Studies car-

ried out in rats indicate that at high dosages, caffeine

increases its own metabolism through induction of

CYP1A [4, 49].

As mentioned above, CYP1A2 is the main isoform

responsible for caffeine metabolism at the therapeutic

concentration of caffeine (up to 100 �M). Therefore,

pharmacokinetic interactions between caffeine and

drugs affecting CYP1A2 activity may occur. For ex-

ample, fluvoxamine, a substrate and potent inhibitor

of CYP1A2 (Ki below 1 �M), decreases the activity

of CYP1A2 [12, 45, 46, 68] which may lead to caf-

feine intoxication [46]. Other selective serotonin re-

uptake inhibitors (SSRIs) such as fluoxetine, paroxet-

ine, and sertraline exert a weaker inhibitory effect on

human CYP1A2, as observed in liver microsomes

(Ki between 4 and 9 �M) [12, 68]. It was also found

that some psychotropic drugs might directly inhibit

rat CYP1A2 activity in liver microsomes [26–30].

Among the antidepressants examined, the tricyclic an-

tidepressant drugs imipramine, clomipramine, and de-

sipramine, and the SSRI sertraline are the most potent

inhibitors of rat CYP1A2. However, the effect of anti-

depressants was approximetly ten times weaker in rats

than in humans, indicating species-differences in

CYP1A2 structure and function [27, 30]. Some phe-

notiazine neuroleptics added in vitro to control liver

microsomes also directly inhibited rat CYP1A2 activ-

ity via competitive or mixed mechanisms, with a po-

tency similar to that found for antidepressants in rat

[26, 28, 30]. Promazine was the most potent inhibitor

of the rat CYP1A2 among the phenothiazines studied

(chlorpromazine, levomepromazine, thioriazine, and

perazine). In contrast to promazine, haloperidol and

atypical neuroleptics such as risperidone and sertin-

dole had practically no effect on the oxidation of caf-

feine in rat liver microsomes. On the other hand,

competitive inhibition of clozapine metabolism (a

CYP1A2 substrate) by caffeine during concomitant

intake of clozapine and caffeine was observed in pa-

tients [18].

In addition to the direct effect of psychotropic

drugs on cytochrome P450 and caffeine metabolism

(e.g. competitive inhibition), some psychotropics may

influence caffeine metabolism indirectly via affecting

cytochrome P450 regulation. Thus a two-week treat-

ment with promazine, perazine, clozapine, or risperi-

done increased the level and activity of CYP1A2 in

rat [26, 58]. Our recent study on the effect of antide-

pressants on the metabolism of caffeine showed that,

when given chronically, fluoxetine increased the rate

of 7-N-demethylation only, while sertraline and mir-

tazapine enhanced the rate of all caffeine oxidation

pathways [52].The latter results indicated that chronic

treatment with fluoxetine induces caffeine metabolism

by enhancing the activity of CYP2C only, while ad-

ministration of sertraline and mirtazapine acts mainly

by elevating the activity of CYP2C and CYP1A2 [26,

44, 52]. In this way, these data appear to support the

use of caffeine as a more universal “pharmacological

tool”, which may be applied for simultaneous estima-

tion of not only CYP1A2, but also the CYP2C sub-

family in pharmacological experiments in rat.

Finally, interactions of caffeine with other drugs

such as allopurinol, antimycotics, cardiovascular drugs,

histamine H2 receptor antagonists, idrocilamide, me-

thylxanthines (i.e. furafylline, theophylline), nonsteroidal

anti-inflammatory drugs (paracetamol), oral contra-

ceptives, phenylpropanolamine, proton pump inhibi-

tors, psoralens, and quinolones have also been ob-

served, as reviewed by Carillo and Benitez [18].

Moreover, a number of other factors, including gen-

der, cigarette smoking (CYP1A2 induction by poly-

cyclic aromatic hydrocarbons), dietary components of

food, beverages, and fitness level also interact with

caffeine metabolism [18, 33].

In conclusion, numerous drug interactions may oc-

cur between caffeine and neuroactive drugs or other

pharmacological medications. Therefore, patients tak-

ing caffeine-containing medicine or coffee drinkers

taking drugs that interact with CYP1A2 may require

proper dosage adjustments upon caffeine ingestion

and cessation.

Summary and conclusions

Due to its safety, favorable pharmacokinetic proper-

ties, and P450 isoform-selective metabolism, caffeine
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has potential as a metabolic marker substance in both

humans and rats, and as a more universal metabolic

tool in the latter species. However, the qualitative and

relative quantitative contribution of P450 isoforms to

the metabolism of caffeine is species- and concentra-

tion-dependent. While 3-N-demethylation is quantita-

tively the main oxidation pathway in humans, 8-hy-

droxylation is the dominant metabolic pathway in

rats. Both of these reactions in the two species are

specifically catalyzed by CYP1A2.

The human data show that 1) apart from the 3-N-

demethylation of caffeine – a CYP1A2 marker reac-

tion and the main oxidation pathway of caffeine in

man – 1-N-demethylation is also specifically cata-

lyzed by CYP1A2; 2) 7-N-demethylation is non-spe-

cifically catalyzed, mainly by CYP1A2 and to a lesser

extent by CYP2C8/9 and CYP3A4; 3) C-8-hydroxy-

lation preferentially involves CYP1A2 and CYP3A4

and to a lesser degree CYP2C8/9 and CYP2E1 at

a concentration of 100 �M, which corresponds to

the maximum therapeutic concentration in human. At

a higher caffeine concentration, the contribution of

CYP1A2 to this reaction decreases in favor of

CYP2C8/9.

The results obtained in rats show that 1) the 1-N-

and 3-N-demethylation of caffeine is predominantly

catalyzed by CYP1A2 and CYP2C; 2) 7-N-deme-

thylation is governed by P450s of the CYP2C sub-

family; 3) 8-hydroxylation, the main oxidation path-

way of caffeine in the rat, is specifically mediated by

CYP1A2 at a concentration of 100 �M. At higher

substrate concentrations, the contribution of CYP1A2

to the metabolism of caffeine decreases in favor of

CYP2C11 (N-demethylations) and CYP3A2 (mainly

8-hydroxylation).

For the above reasons, caffeine may be applied as

a marker substance for assessing the activity of

CYP1A2 in human and rat liver, albeit by different re-

actions: 3-N-demethylation in human and C-8-hy-

droxylation in rat. In addition, caffeine can be used to

preliminarily and simultaneously estimate CYP2C ac-

tivity in rat liver using 7-N-demethylation as a marker

reaction. Caffeine pharmacokinetics may be changed

by drugs affecting the activity of CYP1A2 (human

and rat) or CYP2C (rat), e.g. via autoinduction or

treatment with certain antidepressants or neuroleptics.

Therefore, patients taking caffeine-containing medi-

cine or coffee drinkers taking drugs that interact with

CYP1A2 may require proper dosage adjustments

upon caffeine ingestion and cessation.
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