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Abstract:

Animal models of asthma have been used for over 100 years. The accuracy of extrapolations from animal models to human asthmat-

ics is highly dependent on the species of animal selected. The rat, in comparison with other animals, demonstrates many features of

airway allergy and allergic asthma that are similar to the human conditions. The following features of human asthma can be effec-

tively investigated in a rat model of the disease: cellular infiltration of the lung, antigen-specific IgE production, and a predominant

Th2 response. The majority of available models of asthma are restricted to the acute inflammatory response following a short period

of allergen exposure. The frequently used model of ovalbumin (OVA) sensitization and challenge replicates the inflammatory pro-

cess in the airways.
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Introduction

Animal experiments are widely used to study the pa-

thophysiology of a variety of diseases. There are sev-

eral reasons why scientists have adopted particular

animal models. First, many studies cannot be per-

formed in humans due to ethical concerns. Second, in

vitro models are far removed from in vivo conditions.

When we perform in vivo studies in certain animal

species, we move closer to the conditions seen in hu-

mans, though the results should be carefully consid-

ered. The extrapolation from animal models to human

asthmatics is highly dependent on the species of ani-

mal chosen.

Animal models of asthma have been used for more

than 100 years [13]. Several species have been used to

study respiratory tract allergies. These include guinea

pigs, mice, rats, sheep, and dogs. Inbred mice and

rats, as well as guinea pigs, are the most popular mod-

els for asthma [48]. The guinea pig model was the

first described model of asthma and contributed

greatly to the development of corticosteroid and �2 re-

ceptor agonist therapies [39]. Currently, the use of

guinea pigs is restricted by the lack of genetic modifi-

cations and of specific reagents. Sheep and dogs have

a different biology from humans and are costly when

compared with mice and rats [48]. The most impor-

tant advantage of the mouse model of asthma is the

development of transgenic technology; there are

many mouse-specific probes without particular genes

which allow the study of genetic factors in the pathol-

ogy of asthma [3, 5]. Experimental asthma in mice

can be developed by adoptive transfer of dendritic

cells pulsed with antigens in culture, primed wild-
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type T cells, or genetically modified T cells [20, 10,

18]. Nevertheless, the new strategies in asthma ther-

apy proven in mouse models have been not effective

in human clinical trials [44].

Rat species

The rat, in comparison with other animals, demon-

strates many features of airway allergy and allergic

asthma that are similar to those exhibited by humans

[31]. The ability to extrapolate from rat studies to hu-

mans is one of the paramount advantages. Similarities

between rats and humans include immediate and late

asthmatic responses after an allergen challenge; re-

sponses after a nonspecific challenge with methacho-

line, acetylcholine, or serotonin; IgE production; and

an accumulation of inflammatory cells [4, 46]. Air-

way hyperresponsiveness, airway inflammation, and

obstruction – the main features of asthma – can be

easily reproduced in rats. The ability to produce both

early- and late-stage asthmatic responses, as well as

airway hyperresponsiveness, represents the rat model’s

significant advantages over the mouse model [48].

Rats are relatively cheap, and their larger size fa-

cilitates the measurement of airway and systemic in-

flammations, due to an increased volume of serum

and bronchoalveolar lavage fluid [48]. Additionally,

their larger size ensures stability under anesthesia,

which is important in measuring airway pulmonary

function, hyperresponsiveness, and the acute response

to allergen inhalation [48]. Rats are easily sensitized

using ovalbumin (OVA) [11, 15, 19], house dust mite

extracts [19] or Ascaris antigens [23]. There are an in-

creasing number of reagents available for rat studies;

also, transgenic technology applications in rats have

recently increased [24].

Allergic bronchoconstriction in rats seems to be

primarily mediated by serotonin [31]. It should be

highlighted that the rat is a weak bronchoconstrictor:

more agonist is necessary to produce a narrowing of

the airways as compared to the doses required in

guinea pigs [31]. Thus, the rat model of asthma is fo-

cused mainly on inflammatory processes [21, 31, 48].

There are, however, significant differences between

respective rat strains. The Brown Norway strain is

naturally atopic and presents a more pronounced IgE

and inflammatory response to allergen challenges fol-

lowing allergen sensitization [25]; it is the most ap-

propriate strain for studying allergic inflammation

[11]. The common features of Brown Norway rats and

human asthma include high IgE levels; early and late

allergen responses (the latter can be adoptively trans-

ferred with CD4+ and CD8+ T cells); eosinophilia;

Th2 cytokine production; a susceptibility to respira-

tory viral bronchiolitis; and interferon-� deficiencies

contributing to atopic status [21]. The early response

after an allergen challenge in Brown Norway rats is

mediated by serotonin and cysteinyl leukotrienes

(cys-LT); it is blocked by methysergide and cys-LT

receptor antagonists. The late response depends on

leukotriene E4 (LTE4) and is attenuated by cys-LT re-

ceptor antagonists [12, 22, 36]. The late asthmatic re-

sponse can also be blocked by corticosteroids or by

anti-adhesion antibodies (anti-VLA-4) [32].

Wistar rats can also be sensitized and challenged

with OVA, producing similar but less pronounced ef-

fects as compared to those observed in Brown Nor-

way rats [15, 42]. In contrast, Sprague Dawley rats do

not develop an allergic reaction or an increase in IgE

production under the same conditions [27, 40] and

usually serve as a control group for Brown Norway

rats [2]. In Fisher and Lewis rats there is no pulmo-

nary inflammation and no rise in IgE after an allergen

challenge [38].

Animal studies are the first step in discovering new

pathways and mediators that are important in the pro-

gression of a disease. The modification of certain

pathways, cytokines, or chemokines facilitates the de-

velopment of new drugs and new strategies for asthma

pharmacotherapy. This includes inhibitors of phos-

phodiesterase 4 (PDE4); inhibitors of kinases [IKK,

MAK (p38)]; inhibitors of signal transducers; activa-

tors of transcription 6; antibodies against cytokines

(anti-tumor necrosis factor �); chemokines; and anti-

VLA-4. In vivo animal models are the most effective

tool for studying the effects of a drug because they in-

volve intact immune and respiratory systems [48].

The rat shares many clinical features of human asthma

[31]. The rat model of asthma is a standard model for

testing new drugs and therapies before new drugs en-

ter clinical trials.

An ovalbumin-induced model of asthma

No laboratory animal is known to spontaneously de-

velop a disease with features that could be considered
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asthma [43]. Experimental asthma can be induced by

OVA sensitization followed by an OVA challenge [11,

15, 49]. There are many modifications of this model,

primarily concerning the method of OVA administra-

tion, the number of OVA injections, the number of

OVA challenges, and the administration of adjuvants.

As mentioned above, the rat is a species that can be

easily sensitized. We performed an experimental model

of asthma in Wistar rats, the animal species often used

in pharmacological experiments. OVA sensitization

was done by intraperitoneal injection, and OVA was

precipitated with aluminium hydroxide. This injection

was repeated four times. On the first day a foot pad

injection of heat-killed Bordetella pertussis was given

as an adjuvant. The allergen challenge with OVA con-

tinued for seven consecutive days. In asthmatic ani-

mals, OVA sensitization followed by the OVA chal-

lenge produces a significant increase in total IgE and

typical histological changes in the airways [15].

Adjuvants

In asthma models, adjuvants are used to prime the im-

mune system to react in the desired fashion. In our ex-

perimental model, we used both aluminium hydroxide

and heat-killed Bordetella pertussis [15]. Aluminium

hydroxide, administered together with antigen expo-

sure, promotes the Th2 phenotype [1]. Furthermore,

lipooligosaccharide from Bordetella pertussis drives

a Th2-biased response [8]. There are also adjuvants

that promote a Th1 response, such as Freund’s com-

plete adjuvant [26]. The disadvantage of adjuvant use

is the influence on the immune response, preventing

a direct comparison between humans and animals

after exposure to a certain allergen. This asthmatic re-

sponse of the lungs has been demonstrated by intrana-

sal sensitization of mice, without adjuvants, but the

effect was strain specific [7].

A model of inflammation

Asthma is characterized by recruitment and activation

of inflammatory cells; chemotaxis; bronchoconstric-

tion; increased airway secretion and mucus cell hy-

perplasia; plasma exudation; neural effects; hyperpla-

sia; hypertrophy of airway smooth muscle cells; and

increased airway hyperresponsiveness [31]. The ele-

ments of the airway wall are very important to deter-

mine the response to an allergen and they are organ-

ized in epithelial-mesenchymal trophic units [6]. The

progress of the disease is probably caused by the in-

teraction of epithelial, interstitial, nervous and immuno-

logical factors [31]. Recruitment of the inflammatory

and structural cells in the airways causes the release

of a variety of mediators, aggravating the inflamma-

tory response. Mediators may act synergistically to

enhance their own effect, or one mediator may in-

crease the release of another.

OVA sensitization and challenge causes an inflam-

matory response in the airways. This model is suitable

for the study of acute inflammatory events. The infil-

tration of inflammatory cells involves mainly eosino-

phils, mast cells, neutrophils, and lymphocytes [15,

48]. The eosinophylic component is substantially trig-

gered by an allergen. Based on allergic disease mod-

els, it is known that Th1 and Th2 responses are pres-

ent in models of allergic inflammation. In sensitized

rats, both CD4+ and CD8+ cells are activated in re-

sponse to an allergen challenge; they express Th2 cy-

tokines (18). The Th2 response typically involves an

increase in interleukin (IL)-4, IL-5, and IL-13 [17].

The involvement of Th1 cytokines may explain IgE-

independent mechanisms of allergic inflammation

[37, 47].

A model of tolerance

In humans, repeated allergen exposure causes patho-

logical structural changes in the airways and leads to

airway remodeling. In animals such as the rat, sensiti-

zation and challenge with OVA cause profound mor-

phological changes in the lungs. However, in both

mice and rats, tolerance develops with increasing al-

lergen challenges following sensitization [16, 48]. Re-

peated exposure to an allergen using the continuous

exposure protocol induces an increase in IgE in the

absence of an inflammatory response in the airway,

suggesting that tolerance depends on local mecha-

nisms, not systemic lymphocyte clonal deletion or an-

ergy [31]. Allergen tolerance makes it impossible to

develop a chronic allergic response; therefore, an ani-
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mal model of asthma cannot be used to study the

mechanisms of chronic asthma. One possible solution

would be using a low dose for OVA challenge [45],

but further studies are needed to clarify this phenome-

non. Notably, tolerance should also be considered as

an important model, especially to study the role of

regulatory T cells, which are known to control the

suppression of allergic responses [41].

A model of chronic asthma

Asthma is a chronic disease. One methodological

limitation of animal models of asthma concerns the

chronic stage of disease [9]. Epithelial disruption and

desquamation are the most critical steps for the pro-

gression of the disease. However, as mentioned

above, repeated allergen exposure results in tolerance

rather than the progression of asthma. There have

been several attempts to reproduce the chronic stage

of the disease. In rats and mice, the pulmonary over-

expression of cytokines essential to lung remodeling

represents one possibility, but re-challenge protocols

seem to be more promising [14, 28, 29]. Nevertheless,

a model of chronic asthma needs to be established.

A model of airway remodeling

Anatomically, the rat airways constitute a lower per-

centage of the lung (5.7%) compared to airways in

mice (11%) [31]. However, mice have a low propor-

tion of airway smooth muscle in their airways, result-

ing in augmented airway constriction [13]. Therefore,

the rat is a good experimental model to study airway

remodeling that involves smooth muscle cells. Brown

Norway rats in particular can be used to examine the

contribution of airway smooth muscle cells in the re-

modeling process. After allergen sensitization, a rat

requires at least three challenges before it is possible

to see an increase in airway smooth muscle [35]. The

increase in airway smooth muscle is caused mainly by

hyperplasia, proliferation, and the inhibition of apop-

tosis [30, 33, 34].

Conclusions

Studies of rat asthma experimental models contribute

greatly to our understanding of disease pathophysiol-

ogy. The following features of human asthma can be

profitably investigated in the rat model of the disease:

cellular infiltration of the lung, antigen-specific IgE

production, and predominant Th2 response. Of all

currently applied animal models of asthma, none re-

flects all features of human asthma. The majority of

available models of asthma are restricted to the acute

inflammatory response following a short period of al-

lergen exposure. The most frequently used model of

OVA sensitization and challenge replicates the in-

flammatory process in the airways. The available

models of asthma are limited by their lack of chronic-

ity and by the use of adjuvants. These limitations

should prompt investigators to find more appropriate

methods that allow valid comparison with humans.

Thus, experiments involving an animal model of

asthma should precisely define which aspect of com-

plex disease is the focus.
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