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Abstract:

Lithium and valproate (VPA) have been the most widely prescribed mood stabilizers for the therapy of bipolar disorders (BD) for
more than 50 years. However, the precise molecular mechanism of their pharmacological activity is not fully known. Recent studies
have suggested that both drugs exert antiapoptotic effects. This review focuses on the influence of lithium and VPA on intracellular
apoptotic signaling pathways. The active sites, which are implicated in mediating their action, have been described. It has been found
that both drugs block the key proapoptotic molecules (GSK-3�, caspase cascades) and enhance survival pathways (ERK1/2 and Bax
proteins). The potential significance of the reported antiapoptotic effects has been discussed.
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Abbreviations: ALS – amyotrophic lateral sclerosis, Bax –
proapoptotic proteins, Bcl-2, Bcl-xl – antiapoptotic proteins,
BD – bipolar disorders, ERK – extracellular signal regulated
protein kinases, FAS – cell surface receptor that transduces
apoptotic signal, GSK-3� – glycogen synthase kinase 3�,
HSP70 – heat shock protein 70, IP-3 – phosphate inositol,
LDH – lactate dehydrogenase, MAPK – mitogen-activated
protein kinase, MARCS – myristoylated alanine-rich kinase C
substrate, MCAO – middle cerebral occlusion, NAIP – neu-
ronal apoptosis inhibitory protein, NMDA – N-methyl-D-
aspartate receptor, VPA – valproate, WNT – wingless signaling
pathway

Introduction

Apoptosis and programmed cell death play an impor-
tant role in development of the organism, being en-
gaged, for instance, in an early stage of central nerv-
ous system (CNS) formation, and fulfilling a crucial

functional role. Apoptosis is a process of orderly cell
removal through cell death. Apoptotic cell death is
believed to be triggered by outer signals, whereas pro-
grammed cell death, a variety of apoptosis, is thought
to be induced by intracellular-signals. Both these pro-
cesses lead to elimination of pathologically changed
and aging cells from the organism, and, in concert
with proliferation, differentiation and maturation,
contribute to the precise regulation of the number and
type of cells. Apoptosis plays a fundamental role in
preserving homeostasis within the body [1]. Cellular
regulation of apoptosis is complex and incompletely
understood. However, it is known that many mental
disorders, neurodegenerative and tumor diseases are
underlain by disrupted control of programmed cell
death. It appears that external regulation of proapop-
totic pathways would provide an opportunity for the
development of new therapeutic strategies for mental
disorders, principally affective ones, and injury-related
CNS diseases [16]. For several years, evidences con-
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cerning the neuroprotective effects of mood stabiliz-
ers has been gathered, and the antiapoptotic action of
lithium and valproate (VPA) in particular has been re-
cently reported [17].

Lithium and VPA are the most frequently used
mood stabilizers. According to the definition by Ry-
bakowski [64], mood stabilizing drugs (1) are effec-
tive in the therapy of mania or depression, (2) are ef-
fective in prophylaxis against manic and/or depres-
sive episodes as demonstrated in trial of at least one
year’s duration and (3) do not worsen any aspects of
the illnesses mentioned above. The efficiency of lith-
ium salts was proven in the 1960s, however, their
mechanism of action is still not entirely clear. It is
known that lithium is an ion that easily penetrates
across cell membranes, possessing an extra receptor
target, stabilizes cell membranes of monoaminergic
neurons and regulates water and electrolyte balance
[6]. VPA (a derivative of valproic acid) is a mainstay
in the treatment of different forms of epilepsy. As
mentioned above, it has also been used in psychiatry,
principally in the prophylaxis of bipolar disorder
(BD) and as the second-line treatment in schizoaffec-
tive psychosis, when therapy with other drugs failed
or when lithium carbonate or carbamazepine is con-
traindicated [24, 51, 63].

Experimental studied have demonstrated that mood
stabilizers:
1) have protective action on hippocampal cells dam-

aged by stress,
2) stimulate neurogenesis in rats,
3) decrease frequency of the collapse-phase in a sen-

sory neuronal culture derived from dorsal root gan-
glia of rat fetuses,

4) inhibit apoptosis [67, 78].
At the molecular level, intracellular signal transduc-

tion via the inositol system, G-proteins, glycogen syn-
thase 3� (GSK-3�), neuroprotective factor Bcl-2, pro-
tein kinase-C (PKC), histone deacetylase and proline
oligopeptidase is a common target of these drugs [25].

In this article, we attempt to analyze the most re-
cent reports of experimental studies on animal models
showing the antiapoptotic properties of lithium and
VPA. We focused principally on the influence of these
drugs on intracellular signal transduction pathways
during apoptosis and on pro- and antiapoptotic protein
levels. Results of the newest molecular biology stud-
ies have indicated that mood stabilizers are inhibitors
of apoptosis induced by stress factors [16, 26, 37, 56,
65, 80, 85]. Elucidation of the molecular mechanisms

of the recently discovered antiapoptotic action of
mood stabilizers is a potential key to their therapeutic
efficacy in mental disorders and neurodegenerative
diseases.

Antiapoptotic effects of lithium and VPA

in in vitro studies

The antiapoptotic properties of lithium have become
a focus of interest, and the number of experimental re-
ports underlining the significance of this mechanism
in inhibiting pathological-processes is on the rise.
Jorda et al. [34] demonstrated the neuroprotective ef-
fects of lithium in primary cerebellar granule cell
(CGC) cultures in which apoptosis was induced by
colchicine exposure. Lithium supplementation (5 mM)
decreased the number of neurons exhibiting features
of apoptosis, like DNA fragmentation and chromatin
condensation with a control group was, and these
results were confirmed by immunofluorescence pro-
cedures. Antiapoptotic lithium effects were also dem-
onstrated by Hennion et al. [29] in human neuroblas-
toma SH-SY5Y cell cultures. Cell damage was as-
sessed by lactate dehydrogenase (LDH) release from
the cytosol due to loss of cell membrane integrity. The
study results clearly demonstrated that a strong LDH
release induced by oubain (10 �M), a toxin blocking
Na+/K+ pump, was statistically significantly inhibited
by lithium.

It is believed that the molecular mechanisms of the
therapeutic efficacy of lithium rely upon its interfer-
ence with transmembrane exchange of cations such as
Na+ and K+ which is disrupted in BD [30]. This
mechanism is relevant to its antiapoptotic properties,
which was confirmed by Mora et al. [52, 55]. They in-
dicated that lithium efficiently suppressed apoptosis
induced by low potassium concentration (5 mM) in
CGC cultures. The extra- and intracellular concentra-
tion of potassium ions plays a crucial role in the regu-
lation of switching within the cell between prosur-
vival and proapoptotic pathways. Due to the changes
in K+ concentration, lithium inhibits programmed cell
death by (1) cell membrane stabilization in noradren-
ergic and dopaminergic neurons, (2) blockade of
apoptosis-associated tyrosine kinase, and (3) activa-
tion of cyclic adenosine monophosphate (cAMP) and
insulin growth factor [76]. Lithium also inhibits apop-
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tosis induced by protein kinase B dephosphorylation
arrest and by ceramide C2 (N-acetylsphingosine)-in-
duced suppression of GSK-3� and protein phosphate
(PP2A) [27]. Lithium can block the executor phase
of apoptosis via activation of phospholipase c- � and
3-phosphoinositol kinase (PI-3K), as was demon-
strated by Chen et al. [11] using mouse glial cells. The
authors suggested that lithium decreased the intracel-
lular calcium pool and inhibited voltage-dependent
calcium channel activation, which consequently pre-
vented the cell from entering the apoptotic pathway.
Zhong et al. [85] reported that lithium suppressed
ethanol (400–1600 mg/dl)-induced apoptotic death of
CGCs through the deactivation of caspases 3/9 and
suppression of cleavage of the conservative PARP
protein (ADP-ribose polymerase), whose main func-
tion consists of DNA double-strand break repair.

The antiapoptotic properties of lithium were con-
firmed by Beurel et al. [7] who indicated that this
drug decreased sensitivity of cancer cells to apoptosis
induced by chemotherapeutics. Lithium was demon-
strated to significantly reduce camptotecin- and eto-
poside-induced apoptosis in several human intestinal
cancer cell lines. Lithium chloride, as documented by
Kappes et al. [37], inhibited proliferation of paragan-
glioma and pheochromocytoma cells due to blockade
of GSK-3�, whose active form is considered to be
a tumor growth-promoting factor. Results of the
above-cited studies suggest that therapeutic use of
these properties of lithium can become an adjuvant
strategy in cancer therapy.

Almost all data indicate that lithium blocks the
proapoptotic signal transmission cascade; however,
Song et al. [73] observed that this drug can induce
apoptosis as well. They noted that lithium at a 20 mM
concentration significantly promoted apoptosis in Jur-
kat cells (cancer cell line derived from T lympho-
cytes) by stimulating the “death domain” containing
FAS (cell surface receptor transduces apoptotic sig-
nals) receptors. As with lithium, despite some evi-
dence of the antiapoptotic action for VPA found in
in vivo studies, there are also contradictory data.
Philips et al. [59] revealed that VPA at a 300 �M con-
centration induced apoptosis in the rat hepatoma-cell
line FaO (hepatocellular carcinoma), as demonstrated
by conventional markers of apoptosis (chromatin con-
densation, DNA fragmentation, increased caspase 11
expression, FAS receptor activation). These results
suggested that the effects depend on the experimental
models. Moreover, the hepatotoxicity of VPA ob-

served in bipolar patients can acquire new meaning as
it may be used in cancer treatment in the future. How-
ever, these interesting results obtained in cell culture
have yet to be confirmed in vivo.

Antiapoptotic effects of lithium and VPA

and their therapeutic efficacy in bipolar

affective disorders

Mood disorders have been traditionally attributed to
neurochemicals in the brain, but there is now some
evidence that patients with bipolar affective disorders
and major depression display morphometric changes
suggestive of brain cell loss/or atrophy. Atrophy as
a potentially reversible process may be an intermedi-
ate step leading to apoptosis. The preponderance of
the data from the recent volumetric neuroimaging
studies suggests an enlargement of the third and lat-
eral ventricles, as well as reduced gray matter vol-
umes in the orbital and medial prefrontal cortex, the
ventral striatum and mesiotemporal cortex in patients
with mood disorders [9]. Lucassen et al. [50] studied
postmortem hippocampal tissues with respect to
apoptosis. Using in situ DNA end-labeling they dem-
onstrated a slighty increased rate of apoptosis in the
dentate gyrus, CA1 and CA3 areas of the hippocam-
pus in depressed and steroid-treated patients. In
chronically stressed tree shrews, an animal model
with high validity for depression, Czeh et al. [17] dis-
orders are considered to be a novel class of neurode-
generative diseases. Apoptosis is suggested to con-
tribute to neuronal loss in mood disorders, but at pres-
ent, unequivocal empirical evidence of this idea has
been lacking. Intense research conducted in the last
decade has indicated that antidepressants from differ-
ent classes, like reboxetine and tranylcypromine, in-
creased levels of mRNA coding for the antiapoptotic
protein Bcl-xl in the rat hippocampus. A lot of data
suggest that (BD) arise from abnormalities in synaptic
and neuronal plasticity. Mood stabilizing drugs that
are effective in treating bipolar affective disorders
have been shown to control synaptic plasticity and
cellular resilience [16, 42, 66]. Lithium and VPA
regulate a number of factors involved in the cell sur-
vival pathways, including: cAMP response element
binding protein (CREB), brain-derived neurotrophic
factor (BDNF), antiapoptotic protein (Bcl-2) and ex-
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tracellular signal regulated protein (ERK)/mitogen-
activated protein (MAP) kinases. They can up-regu-
late neurogenesis, the birth of progenitor cells, as well
as their maturation and survival. It has been docu-
mented that therapy of manic-depressive patients with
lithium exerts regenerative neurostructural (an in-
creased gray matter volume in brains) and neuro-
chemical effects (an increased level of the N-acetyl-
aspartate – marker of neural viability and function)
[45, 58]. The antiapoptotic and neuroprotective ef-
fects of VPA were corroborated by magnetic resonan-
ce studies in BD patients treated with this drug. The
volume of the left cingulated gyrus of the hippocam-
pus was increased in the patients, while its reduction
is considered to be an endophenotype of this disease
[9, 46, 64].

Several mechanisms are probably involved in the
antiapoptotic action of mood stabilizers, but primarily
the blockade of the phosphatidylinositol (PI) cascade.
It is known that disruption of the PI cycle underlies
pathophysiology of BD, whose symptoms are effi-
ciently alleviated by lithium. Nuclear magnetic reso-
nance studies of lithium-treated patients demonstrated
an increased concentration of myoinositol (an impor-
tant component of the PI secondary messenger sys-
tem) in certain brain structures. Inhibition of myoino-
sitol phosphate breakage leads to a decrease of cal-
cium ion concentration, which is elevated in BD [45].
The latest clinical data have indicated that both men-
tioned drugs lower sodium-myo-inositol cotransporter
mRNA expression in neutrophils of bipolar patients
[79]. Accumulating evidence has clearly demon-
strated that lithium and VPA at therapeutically rele-
vant concentrations activate novel, secondary messen-
ger cascades such as the ERK/MAPK survival path-
way, which may mediate the antimanic effect of mood
stabilizers [13, 30]. On the other hand, both of them
reduce PKC activation that is up-regulated in BD pa-
tients and implicated in the pathophysiology of BD
[51].

Antiapoptotic effects of lithium and VPA

in in vivo studies. Their potential clinical

significance in neurological diseases

Currently, all data concerning the antiapoptotic effects
of lithium and VPA in Huntington’s, Alzheimer’s and

Parkinson’s diseases and ischemic stroke have come
only from experimental investigation.

Studies on a model of Huntington’s disease, which
involves injection of a strong neurotoxin, quinolinic
acid, into the striatum, revealed that lithium suppressed
the executor phase of apoptosis [77]. Intracerebral ad-
ministration of a neurotoxin, aluminum maleate, to
rabbits elicited neurological deficits (hemiplegia, pa-
ralysis), while molecular changes in the hippocampus
involved cytochrome c release, a decrease in the level
of the antiapoptotic proteins (Bcl-2, and Bcl-xl) with
a concomitant increase in the content of proapoptotic
protein (Bax), caspase 3 activation and DNA frag-
mentation. Treatment of rabbits with lithium carbon-
ate dissolved in drinking water restored the optimal
level of regulatory proteins, i.e., predominance of
Bcl-2 and Bcl-xl proteins paralleled with the down-
regulation of Bax proteins in the CA1-4 pyramidal
cell layer of the hippocampus and reduced DNA dam-
age caused by aluminum maleate [26, 57, 65].

Clinical studies have revealed that radiotherapy of
pathological changes within the skull cause long-term
disturbances of cognitive functions, neurogenesis re-
duction and hippocampal neuron damage, particularly
in children and the elderly. Yazlovitskaya et al. [81]
presented interesting results demonstrating that lith-
ium evoked the regression of post-radiation neuro-
logical deficits in mice and inhibited apoptosis of
HT-22 mouse hippocampal neurons exposed to X-ray
irradiation. Alleviation of the hippocampal irradia-
tion-induced cognitive deficits in mice by lithium was
investigated in the Morris water maze. Mice treated
intraperitoneally with lithium (40 mg/kg) for 7 days
before the irradiation found the escape platform twice
as fast, which is a measure of drug efficacy. Parallel
in vitro studies demonstrated that lithium (3 mmol/l)
added to the irradiated hippocampal HT-2 cell cul-
tures lessened some typical morphological features of
apoptosis in neurons. Similar results were obtained
during the histological examination of hippocampal
slices from irradiated mice. LiCl-treated animals
showed less pycnotic and terminal deoxynucleotidyl
transferase-mediated deoxyuridine triphosphate biotin
nick labeling (TUNEL) positive nuclei compared with
a control group. Yazlovitskaya et al. have suggested
that the radioprotective action of lithium is associated
not only with GSK-3� inhibition due to lithium-
induced PI-3K/AKT pathway stimulation, but also
with a lowering of the proapoptotic tumor suppressor
protein (p53) and Bax protein levels and elevating
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Bcl-2 protein content. According to the authors, the
antiapoptotic and neuroprotective effects of lithium
could also be related to the regulation of antiapoptotic
protein gene expression. Furthermore, cross-talk be-
tween lithium and neuronal apoptosis inhibitory pro-
tein (NAIP) is important in this discussion. NAIP is
a representative of the IAP family (inhibitors of apop-
tosis protein in mammals inactivating caspase 3,7
and 9) and lithium – CDK-5, whose dysregulation, as
suggested by the most recent studies, can be impli-
cated in cell cycle dysfunction and the progression
of neurodegeneration in Alzheimer’s disease [4, 34,
52, 82].

There is a great hope that lithium can be used for
the treatment of CNS injuries, intracranial cancers
and neurodegenerative diseases. It is known that the
fate of a cell under stress depends on many factors,
like damage extent and type, and cell cycle phase.
Ren et al. [62] demonstrated a neuroprotective effect
of lithium injected at a dose of 1 mM after an ischemic
episode in middle cerebral artery occlusion (MCAO)
– the rat model of ischemic stroke. Neuroprotective
effects against hypoxic-ischemic brain injury were
observed by Kabakus et al. [35] in neonatal rats when
given VPA. These effects were confirmed by molecu-
lar studies revealing the influence of lithium and VPA
on the guardian heat shock proteins, (HSP)70-heat
shock protein and (HSF)1, and DNA binding activity
in post-ischemic regions. It was shown that lithium
and VPA reduced ischemia and alleviated neurologi-
cal deficits (as measured by motor performance) in
the rat MCAO model. According to these authors,
the neuroprotective effect of lithium resulted from
strengthening of the HSP70 response to ischemic
stress and a two-fold increase in DNA binding activity
by HSF1 compared to the control group (ischemic but
untreated with lithium and VPA), in which high
HSP70 levels persisted for 24 h after ischemia and de-
clined gradually within 3 and 7 days. In the lithium
and VPA-treated groups, the level of these proteins at
the same time points was much higher, which appar-
ently promoted cell survival. Triggering of the prosur-
vival pathways by lithium and VPA can be a conse-
quence of decreased GSK-3� activity, which inhibits
HSF1 binding, or of the inhibition of p53 and Bax
protein activity and/or diminished stimulation of
N-methyl-D-aspartate (NMDA) receptors and nuclear
factor-�B expression due to HSP70 hyperexpression,
which is activated by ischemia and initiates the apop-
totic cascade [17, 32, 58, 61, 62] (Fig. 1).

Due to its antiapoptotic activity, lithium and VPA
presumably open new avenues in the therapy of me-
chanical CNS injuries. Su et al. [75] proved lithium
salts to promote proliferation of progenitor nervous
cells transplanted to damaged rat spinal cord, thereby
facilitating the restitution of damaged neurons and re-
ducing microglia and macrophage activity, thus mini-
mizing the risk of graft rejection.

Karlovic et al. [38] showed that lithium increased
the expression of p21 protein and surviving (belonging
to IAP protein family) in human glioblastoma cells
(A1235) and elicited cytostatic effects at 20 mmol/l
on tumor cells. Lithium increased the expression of
p21 protein (a cyclin-dependent protein kinase inhibi-
tor) by influencing the p53 protein. Switching on pro-
or antiapoptotic pathways involving DNA repair pro-
cesses is regulated by the p53 protein, known as
“the guardian of the genome”. This protein induces
G1 phase cell cycle arrest, thereby incapacitating the
replication of damaged DNA, which constitutes a sig-
nificant check point of the cell cycle. It is also known
that the p53 protein is able to engage members of the
Bcl-2 family in the regulation of cytochrome c re-
lease, which fulfils an undisputable role in apoptosis.
Lithium’s effect on the p53 protein is associated with
the functional regulation of the HSP70 and HSP40
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Fig. 1. Targets of antiapoptotic action of lithium associated with the
modulation of intracellular protein activity. Bcl-2 – antiapoptotic pro-
teins; cAMP – cyclic adenosine monophosphate, caspases – cys-
teine proteases that are one of the main executors of the apoptotic
process, cytochrome c – mitochondrial intermembrane-space pro-
tein; ERK/MAP – mitogen activated protein kinase cascade, an es-
sential component of the signal transduction mechanism; HSP – heat
shock protein; IGF – insulin-like growth factor; NMDA receptor –
N-methyl-D-aspartate – ionotropic receptor for glutamate; p53 – tran-
scriptional factor that regulates the cell cycle, and has been de-
scribed as the “guardian of the genome”



chaperones, which dissociate p53 aggregates under its
hyperexpression. This effect confirms the antiapop-
totic action of lithium [13, 16, 22, 43].

The most recent data on neurodegenerative dis-
eases suggest that VPA and lithium suppress the phos-
phorylation of tau proteins and neurofibrillary tangle
protein and block formation of �-amyloid aggregates,
which are considered to be the main neurotoxic factor
in Alzheimer’s disease [25, 48]. These aggregates
produce neurofibrillary tangles that block axonal
transport in neurons, compose senile plaques and in-
duce inflammatory processes. It has been proven that
the beneficial therapeutic effects of lithium and VPA
result from multidirectional protection consisting of:
(1) DNA protection against oxidative damage,
(2) blockage of tau protein hyperphosphorylation,
(3) regulation of disturbed calcium homeostasis,
(4) inhibition of caspase 12 involved in stress-induced
apoptotic pathway endoplasmic reticulum (ER) (5) mo-
dulation of c-Jun N-terminal kinase and (ERK) [4, 12,
33, 41, 43]. As demonstrated by Shin et al. [70], lith-
ium inhibited apoptosis in a mouse model of amyo-
trophic lateral sclerosis (ALS). The results unequivo-
cally showed that LiCl treatment blocked apoptotic
machinery through the suppression of FAS (cell sur-
face receptor that transduces apoptotic signals) path-
way activation (FAS is a ligand associated with tumor
necrosis factor), diminution of reactive oxygen spe-
cies levels and content of proapoptotic proteins, and
reduced the motor dysfunctions characteristic of ALS
[23, 70, 73, 74].

Results of recent experimental studies with lithium
treatment in Parkinson’s disease are promising. The
antiapoptotic mechanism in this case prevents the ni-
grostriatal dopaminergic neuron decay, which is, at
least partially, related to excitotoxic effect of gluta-
mate on the cells. Parkinsonian-like symptoms in ani-
mals can be elicited by 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) injection, which is trans-
formed into MPP+ ions, increasing glutamatergic sys-
tem activity [83]. Calcium overload in the cells and
blockage of complex I of the respiratory chain leads
to the activation of transcription factors c-Jun and
p38, and the cell then enters apoptotic route. Chuang
et al. [14] demonstrated that glutamate-induced cyto-
toxic effects could be inhibited by lithium, which sup-
presses NMDA receptors and stimulates (MAPK) and
the Bcl-2.

It has been reported that VPA has the potential to
benefit patients suffering from human immunodefi-

ciency virus (HIV) with cognitive impairment. Dys-
functions in the CNS in HIV-dementia patients are as-
sociated with loss of neurons within certain regions of
the brain and high levels of neuronal apoptosis. This
state is the result of a production of numerous neuro-
toxic factors, like platelet activating factor, which
may be inhibited by VPA, during the down-regulation
of GSK-3� (activity of this enzyme may play an im-
portant role in the pathogenesis of HIV-associated de-
mentia patients) [19].

However, the above recent experimental findings
seem to be promising, but there is no clinical data that
confirm lithium’s therapeutic efficacy in the men-
tioned diseases.

Effect of lithium and VPA on intracellular

signal transduction. Main targets of their

antiapoptotic action

The above review of experimental data indicates that
lithium salts and VPA have different targets through
which they produce antiapoptotic effects by inhibiting
the cell death cascade. The best known targets are PI
and the wingless signaling pathway (WNT), PKC,
GSK-3� and proteins of the HSP group.

The PI system is an important intracellular signal
transduction pathway. Lithium was demonstrated to
affect inositol-dependent processes using the geneti-
cally modified yeast Dictiostellum discoideum, in
which defective cell aggregation was observed in an
early developmental phase. It was shown that lithium
increased inositol-1-phosphate synthase activity,
which is the main inositol indicator in vivo [64, 78].
By inhibiting myoinositol phosphate breakage, lith-
ium increases its concentration at the cost of free
inositol, which is indispensable for PI resynthesis. In
this way, lithium ions block the synthesis of secon-
dary messengers diacylglycerol and 3-phosphate ino-
sitol (IP3) (Fig. 2). Blockade of the PI cascade results
in: (1) decreased stimulation of muscarinic acetylcho-
line receptor and (2) inhibition of inositol monophos-
phatase. These two mechanisms lead to a lowering of
calcium ion concentration [5, 21, 49, 60].

The influence of lithium on calcium level decrease
by PI-mediated transmission blockade is involved in
the antiapoptotic action of mood stabilizers. Calcium
ions (Ca2+) play a significant role in the activation of
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apoptosis signaling (its concentration is higher in BD
patients) [39]; therefore, in BD patients, it is impor-
tant to restore Ca2+ level balance.

Long-standing lithium treatment also influences
the PKC transduction pathway, which receives infor-
mation from the PI system. Lithium and VPA inhibit
PKC signaling, which may play an important role in
the pathophysiology of BD, diminishing its level and

activity, and reducing myristoylated alanine-rich C ki-
nase substrate (MARCS) [28]. According to the latest
data, the other drug – tamoxifen, which demonstrates
antimanic properties, also significantly reduces the
activity of PKC in rat brain [83].

The next lithium target, GSK-3�, is a focal point of
many signal transduction routes. GSK-3� affects
8 key transcription factors (e.g., AP1, LEF, Myc) and
is an important target of mood stabilizing drugs.
GSK-3� is a key element in the induction of pathways
promoting programmed cell death [36, 54]. Therefore,
the inhibition of this enzyme by lithium, which is its
selective inhibitor, is to a large extent responsible for
the antiapoptotic properties of the drug [15, 31, 33,
46, 68, 73] (Fig. 3). GSK-3� blocks prosurvival me-
chanisms implicating HSP and PI-3K/Akt, thereby
limiting the cell’s ability to cope with such insults as
hypoxia, stress, or oxidative, osmotic and temperature
disturbances. It is engaged in the pathomechanism of
neurodegenerative diseases because it catalyzes tau
protein phosphorylation, leading to their ubiquitina-
tion, thus increasing amyloid �-aggregation in Alz-
heimer’s disease patients. Lithium’s effect on GSK-3�

was first observed in sensory neuron cultures derived
from dorsal root ganglia of rat fetuses. Lithium (at
a therapeutic dose of 0.8–1 mM) increased axonal
branching proximal to the growth zone. The induction
of proapoptotic pathways initiated by GSK-3� is effi-
ciently suppressed by lithium at different stages. By
inhibiting GSK-3�, lithium activates the �-catenin/
WNT route [36, 44] (Fig. 4).

The WNT pathway is implicated in many physio-
logical (growth and differentiation of tissues and or-
gans) and pathological (carcinogenesis) processes,
and components of this route have potential to treat
many diseases. Many genes whose expression is in-
duced by WNT play an important role in controlling
apoptosis, the cell cycle and neoplastic transforma-
tion. The lithium-GSK-3�-�-catenin pathway regula-
tion is crucial to functions fulfilled by �-catenin and
its position in signal transmission. �-Catenin is the
central molecule of WNT, which participates in dif-
ferent cellular processes like adhesion, differentiation,
carcinogenesis, synaptic plasticity, nitric oxide syn-
thase regulation (NOS2 – demonstrated in vivo and
in vitro), and the WNT-dependent gene expression of
c-Myc, cyclins D1, peroxisome proliferating activated
receptor (PPAR) and cyclooxygenase (COX). Re-
cently, it has been discovered that �-catenin activated
transcription factor FOXO (“forkhead box proteins”,
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Fig. 2. Lithium ion as an inhibitor of inositol lipid intracellular trans-
duction signaling. DAG – diacylglycerol, ER – endoplasmic reticu-
lum, IP3 – 3-phosphate inositol – essential component of phospho-
inozitol-pathway; PIP2 – phosphatidylinositol bisphosphate; sub-
strate for cleavage with phospholipase C, products of this reaction
are IP3 and DAG; activates calcium channels on ER; intracellular
secondary messenger

Fig. 3. Inhibition of proapoptotic signal transduction of glycogen
synthase-3� by lithium. Ap-1 – multiprotein complex DNA binding;
�-catenin – subunit of the cadherin protein complex, CREB – c-AMP
response element binding which binds to DNA and increases or de-
creases transcription of certain genes; GSK-3� – glycogen synthase
kinase; HSF – heat shock transcription factor protein; Myc – family of
transcription factors



family of transciptional factors) governs responses
under oxidative stress. When active WNT is absent,
GSK-3� phosphorylates �-catenin at three positions:
Ser33, Ser37, and Thr41. This destabilizes the protein

and accelerates its proteosomal degradation. �-Catenin
accumulation is an in vivo measure of its inhibition by
GSK-3� [20, 44]. Ultimately, lithium activates the
WNT signal transmission pathway that leads to the
activation of many WNT-dependent routes. This ac-
tion probably underlies the therapeutic effects of lith-
ium salts in neuronal degeneration by stimulating sur-
vival pathways like PI3K/Akt signaling cascades [2].
Manipulating WNT signaling may play important role
in BD patients.

Both of them are proapoptitic-GSK-3� inhibitors,
decrease the phosphorylation of �-catenin (GSK-3�

substrate) the nuclear translocation of �-catenin and
increase the phosphorylation of Akt protein [72].

Lithium can stop the programmed cell death path-
way by influencing Bcl-2 proteins that have pro- or
antiapoptotic properties. These proteins, localized
within the mitochondrial membrane, regulate mem-
brane permeability, being able to influence the forma-
tion of pores or channels. Lithium increases the anti-
apoptotic protein level, thereby promoting the prosur-
vival pathway in the cell, which ultimately depends
on an excess of apoptosis inhibitors over its promot-
ers. In this way, lithium stabilizes the mitochondrial
membrane and blocks the executor phase of apoptosis
by disabling the release of proapoptotic molecules to
the cytosol [8, 40, 53, 57] (Fig. 5).

VPA was shown by studies on different experimen-
tal models to produce antiapoptotic effects. It was
shown to inhibit the transmission via the PI pathway
by decreasing myoinositol transport and reducing the
activity of PKC and MARCS, which are the enzymes
indirectly linked to the PI route through the secondary
messengers DAG and IP3. This mechanism may be
implicated in the stimulation of neuronal growth ob-
served in vitro. VPA amplifies prosurvival signals in
the cell by the activation of antiapoptotic proteins of
the Bcl-2 family, blockade of the proapoptotic caspase
cascade and GSK-3� inhibition. VPA activates WNT
genes, thereby increasing �-catenin synthesis, whereas
catenin binds to cathedrins, presenilins and transcrip-
tion factors, and influences synaptogenesis, prolifera-
tion and promotion of prosurvival signals [15, 52, 69]
(Fig. 6).

According to pioneer studies, VPA combined with
antiretroviral therapy (HAART) can be an efficient
weapon in latent HIV infection management. This is
due to its capacity to inhibit histone deacetylase
(HDAC1), which plays a crucial role in preserving
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Fig. 4. Signal transmission within the WNT pathway and the effect of
lithium on GSK-3� and �-catenin relation. �-Catenin – subunit of the
cadherin protein complex, essential part of the WNT signaling path-
way; DVL – protein is a critical component of WNT signaling pathway;
FZD receptor – frizzled/WNT pathway receptor; WNT – wingless sig-
naling pathway

Fig. 5. Lithium implications in pro-survival pathway associated with
the activation of antiapoptotic proteins of the Bcl-2 family. AIF factor –
apoptotic inducing factor, major factor determining caspase-inde-
pendent neuronal death; Apoptosome – large protein formed in the
process of apoptosis from mitochondria in response to an intrinsic
and an extrinsic death signaling; Bax – proapoptotic proteins; Bcl-2 –
antiapoptotic proteins; cytochrome c – mitochondrial intermembrane-
space protein; Smac/Diablo – protein (factor) that has been shown in
response to apoptotic stimuli



HIV in a latent state [71]. It is suggested that this is
involved in the process of apoptosis [40].

Conclusions

Despite structural differences, lithium and VPA elicit
the same clinical effect, namely, they stabilize mood.
They show antiapoptotic actions at the cellular level,
which is a significant component of their neuroprotec-
tive effect. Although the molecular mechanism of this
action has not yet been elucidated in detail, it is
known that the drugs influence many important mes-
senger molecules [12, 15]. Data suggest that, due to
the suppression of proapoptotic pathways and the am-
plification of prosurvival signals, lithium and VPA
can become an efficient weapon in fending off neuro-
degenerative diseases (e.g., Alzheimer’s disease, Hun-
tington’s disease, Parkinson’s disease, ALS), toxic
factors and cognitive deficits resulting from CNS in-
juries [81]. Antiapoptotic effects also, at least par-
tially, account for the therapeutic activity of both
mentioned drugs in BD [3].

Results of in vitro studies on cell cultures suggest
that PI pathway blockade, suppression of NMDA re-
ceptors, stimulation of ERK and MAPK and activa-
tion of the WNT route are the main targets of anti-

apoptotic action of lithium. On the other hand, VPA
blocks the apoptotic cascade mostly via the inhibition
of GSK-3�, PKC and MARCS, by lowering myoi-
nositol transport and increasing �-catenin activity,
which is the central biomolecule in the WNT path-
way. Lithium and VPA presumably decrease SMIT
mRNA expression, as demonstrated on neutrophils of
bipolar patients using RT-PCR [79]. According to
western blot analysis in an animal model of cerebral
ischemia, these drugs increase the level of regulatory
proteins of the HSP family, which result in a reduction
of ischemia-induced neurological deficits, including
cognitive disorders. At the molecular level, this action
provokes blockade of transit of apoptosis-initiating
factors from the mitochondria to the cytosol (includ-
ing cytochrome c), and it elevates HSF binding to
DNA, thereby switching the cell to prosurvival routes.
Lithium and valproic acid equally inhibit tau protein
hyperphosphorylation, which can be relevant to Alz-
heimer’s disease therapy [62].

Despite the preponderance of experimental reports
authenticating the antiapoptotic action of lithium and
valproic acid, there are studies demonstrating their
apoptosis-promoting effect. These data suggest that
the ultimate effect depends on the drug dose and ex-
perimental model. VPA was shown to induce apopto-
sis in the rat hepatoma cell line FaO, whereas lithium
activated apoptosis related to FAS receptors in Jurkat
cells [57, 73, 84].

The results obtained thus far appear to be interest-
ing from a therapeutic standpoint. A majority of the
studies were conducted with lithium in in vitro mod-
els. Therefore, further in vivo studies and clinical tri-
als are needed in order to better understand the effect
of mood stabilizers on apoptosis, which may facilitate
the therapeutic use of these drugs.
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