Acute doxorubicin nephrotoxicity in rats with malignant neoplasm can be successfully treated with fullerenol C$_{60}$(OH)$_{24}$ via suppression of oxidative stress

Rade Injac1, Marija Boskovic2, Martina Perse3, Eva Koprivec-Furlan1, Anton Cerar3, Aleksandar Djordjevic4, Borut Strukelj1

1Faculty of Pharmacy, Institute of Pharmaceutical Biology, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia

2Faculty of Pharmacy, Institute of Pharmacokinetics and Biopharmaceutics, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia

3Institute of Pathology, Medical Experimental Center, Medical Faculty, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia

4Faculty of Sciences, Department of Chemistry, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia

Correspondence: Rade Injac, e-mail: injacrade@gmail.com

Abstract:
Oxidative stress has an important role in the pathogenesis of doxorubicin (DOX)-induced nephrotoxicity. The aim of this study was to investigate the nephroprotective effects of fullerenol (FLR), an antioxidant agent, on DOX-induced nephrotoxicity. The investigation was carried out on adult female Sprague Dawley outbred rats with chemically induced breast cancer (1-methyl-1-nitrosourea; 50 mg/kg, ip). Rats were divided into the following groups: control healthy, control cancer, DOX alone (8 mg/kg, ip, cancer), DOX plus FLR as a pre-treatment (8 mg/kg and 100 mg/kg, respectively, ip, cancer), and FLR alone (100 mg/kg, ip, cancer). At the end of the 2nd day after drug administration, blood and kidney tissues were taken for analysis. The activity of lactate dehydrogenase and α-hydroxybutyrate dehydrogenase as serum enzymes, as well as level of malondialdehyde, glutathione, glutathione peroxidase, glutathione reductases, catalase and superoxide dismutase, were determined. DOX caused nephrotoxicity, but FLR pre-treatment prevented oxidative stress, lipid peroxidation and the disbalance of GSH/GSSG levels in kidney tissue caused by DOX. Our results confirm satisfactory nephroprotective efficacy of FLR in the acute phase of toxicity and encourage further studies regarding its use as a potential nephroprotector.

Key words:
doxorubicin, nephrotoxicity, fullerenol, oxidative stress, kidney, rats, mammary carcinomas