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Abstract:

The central nervous system (CNS) is a perfectly regulated environment with conditions far different from those in the rest of the or-
ganism. Even slight changes in this machinery affect its functioning. The blood-brain barrier (BBB) is the frontier that isolates brain
tissues from the substances circulating in the blood vascular system. It is also a diffusion barrier that allows only water and small
lipophilic molecules to freely access the brain in accordance with their concentration gradients. Moreover, animal studies have re-
vealed differences in the barrier tightening time-course during development. The BBB becomes resistant to larger molecules before
it stops smaller ones. Thus, its maturation has a progressive scheme. Asimilar scheme is true for BBB transporters. Due to all of these
facts, the BBB is the most significant element responsible for the preservation of CNS homeostasis.
As a functional system, the BBB can be investigated as a frontier composed of pericytes, astrocytic end feet, and brain endothelial
cells (ECs). Special emphasis is placed on the tight junctions (TJs) existing between them. An alternative point of view considers the
BBB to be a functional complex consisting not only of bricks of cells but also of structures between those cells and their co-
functioning elements.
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Introduction

For optimal activity, the central nervous system
(CNS) requires a perfectly regulated environment and
homeostasis with characteristics far different from
those in the rest of the organism. The main factor
maintaining the homeostasis of the CNS is the proper

function of the blood-brain barrier (BBB). Under both
physiological and pathological conditions, the BBB
isolates and protects nervous tissue of the brain and
spinal cord from fluctuations in nutrients, hormones,
metabolites, and other blood constituents. It also pro-
tects this tissue from the direct influences of many
endo- or exogenous compounds circulating in the
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blood. The BBB is necessary and especially important
for the highly precise control of the microenvironment
that secures neuronal transmission [7, 36, 81, 83].

The term blood-brain barrier actually encompasses
a few aspects of barrier functions; these include
physical, transport, and metabolic aspects. Briefly, the
BBB tasks of great importance for CNS functions can
be divided into a few categories. The BBB controls
delivering of nutrients to and removing metabolites
from the CNS compartment. It is also a barrier for
ionic currents and hydrophilic compounds able to
cross it only through special membrane transporters.
The BBB protects the CNS from abrupt changes in
blood biochemistry that occur after meals, physical
excercises, or in pathological conditions. Moreover,
the BBB divides neurotransmitters and in general,
neuroactive substances into two pools – of the central
and peripheral systems [7].

The BBB also plays a key role in CNS disorders, in
which barrier permeability usually increases signifi-
cantly. Moreover, the BBB is also an extremely im-
portant „guardian” that regulates access of drugs to
the CNS under both physiological and pathological
circumstances. Only a small number of drugs are able
to freely penetrate the BBB and gain access to nerv-
ous tissue. BBB components are responsible for the
biochemical modification of chemicals that enter the
CNS. Moreover, some drugs, even if they can cross
the BBB, are immediately removed from the CNS.

To ensure and protect CNS homeostasis, the BBB
has to be a very stable structure. However, for fast ad-
aptation to changing conditions, the BBB also re-
quires plasticity [41]. This characteristic depends on
many structural and functional properties of BBB
components.

BBB building blocks

Endothelial cells

Brain endothelial cells (ECs; Fig. 1) are unlike the en-
dothelial cells of the peripheral circulation. In com-
parison to those cells, brain ECs, differ phenotypi-
cally, are characterized by the presence of tight junc-
tions (TJs), and lack pinocytic vacuoles. The high
number of cytosolic mitochondria suggest their high
energy metabolism. It is also noteworthy that they

lack fenestrations in their plasma membranes [2, 21,
41, 58] and are selectively permeable to molecules
with suitable mass and lipophilicity [41].

ECs have several specific identity markers, includ-
ing �-glutamyl-transpeptidase (GGTP), alcalic-phos-
phatase, von Willebrand factor (vWf), and glucose
transporter-1 (GLUT-1). Endothelial barrier antigen
(EBA) and OX-47 antigen merit mention here as well
[21]. The luminal surface of endothelial cells is cov-
ered by glycocalyx – negatively charged mesh of pro-
teoglycans, glycosaminoglycans, glycoproteins and
glycolipids [219]. Furthermore, BBB ECs are also
marked by the presence of two N-glycosylated phos-
phoproteins: P-glycoprotein (Pgp) and Multidrug
Resistance-Associated Protein (MRP) [20]. Finally,
their most important feature is their tight junctions.

Astrocytes

Astrocytes, like neurons, derive from the ectoderm of
the neural tube. Of the approximately 11 phenotypes
ascribed to astrocytes, eight correlate with blood ves-
sels [6]. Furthermore, their cross-cellular interactions
enforce functional polarity [3, 174]. Two main types
of astrocyte cells can be distinguished in the brain.
Protoplasmic cells exist in the grey matter, and fibril-
lary cells are present in the white matter. Protoplasmic
astrocytes are characterized by large nuclei and nu-
merous thick cytoplasmic appendices. The endings of
the appendices form cap-like structures known as
end-feet (lat.: pes sugens) that tightly attach to neu-
rons on one side and blood vessels on the other to form
a specific relay station between neurons and blood.

Due to their localization, astrocytic end feet have
a few specific characteristics. For example, high con-
centrations of the water channel aquaporin 4 (AQP4)
and the K+ channel Kir4.1 are placed within the or-
thogonal arrays of particles (OAPs). This accumula-
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Fig. 1. Rat brain capillary endothelial cells-in vitro culture. (A) Immu-
nofluorescent visualization of VWF; (B) cells stained with Hematoxy-
lin-Eosin



tion is connected with the expression and action of
agrin – heparin sulphate proteoglycan. This protein is
produced in the extracellular matrix sheet by the basal
cell membranes (basal lamina) [221, 231]. Agrin is
important for BBB integrity and accumulates when
the barrier tightens [231]. Furthermore, its splice vari-
ant Y0Z0 is a specific element of the capillary basal
lamina formed by brain ECs. The above-mentioned
specific details suggest a vital role for the extracellu-
lar matrix in the cross-influence of astrocytes and en-
dothelium [6].

Astrocytes play a major role in neuronal metabo-
lism, nutrition, and discharge of used substrates.
Astrocytes that connect to the pial matter have the
abilities of transcytosis and active ion transport.

Pericytes

Pericytes are small vessel wall-associated cells that
originate developmentally from the mesoderm and
differ from mesenchymal cells [105]. They are sepa-
rated from ECs by the basal lamina (basement mem-
brane), but gap junctions (peg-and-socket) provide
contact spots [50].

In the rat brain, pericytes cover approximately ¼ of
capillary outer surfaces [194]. There are two classes
of pericytes: some are placed at capillary straight
parts, whereas others are located at capillary connec-
tions. Anatomically, they are equipped with claw-like
appendices entangling the capillary [162]. Co-culture
studies have revealed that capillaries change their
phenotype from multilateral to spindle-like when they
connect to capillary-like structures (CLS); however,
this type of association occurs only in the presence of
astrocytes [169].

In the brain, pericytes are responsible for the regu-
lation of EC activity, mediation of inflammation, and
control of CLS formation and capillary diameter [22,
140, 162, 169]. They therefore play an important and
composite role in the maintenance of the BBB and
brain homeostasis.

Tight junctions (TJs)

The most important factors responsible for BBB im-
permeability are the junctional complexes existing be-
tween the ECs of brain microvessels. TJs exist be-

tween the ECs and encircle the cells like a continuous
belt. Morphologically, they are represented by closely
connected fragments of adjacent ECs known as the
zonula occludens. At these locations, membranes are
completely fused and form a five-layer construction
[21]. The number of fusion points between TJs dif-
fers; due to these differences, the level of tightness in
different regions is also diverse [21].

Functionally, TJs work in several ways. They con-
stitute the frontier for protein and lipid diffusion
across the membranes and confer to the ECs polarity,
which is manifested by a non-uniform distribution of
a number of transporters between the luminal and ab-
luminal membranes. Due to complete fusion, they
also seal the paracellular way to force transport of
substances through the membranes and cytosol [21, 76].

TJs are characterized by high electrical resistance
(1500–2000 �cm2), and their integrity depends on
a proper extracellular Ca2+ ion concentration. A drop
of resistance causes TJ destabilization. Moreover, an
increase in intracellular cATP causes the formation of
fusion points and tightens TJs. Opposing mechanisms
seem to be mediated by phorbol esters.

Several plasma membrane proteins forming TJs
have been identified. Among those are claudin, oc-
cludin, and adherens junction molecules. In addition,
ZO (zonula occludens)-1, ZO-2, ZO-3, and cingulin
have been identified as cytoplasmic proteins that link
transmembrane proteins with actin, a primary cyto-
skeletal protein responsible for the structural and
functional integrity of the endothelium [21].

Claudins

To date, 24 members of this protein family have been
identified in mice and humans. Claudins are 22 kDa
phosphoproteins consisting of four transmembrane
domains and seem to be the primary building material
of the TJs. The claudin from one EC connects with
an analogous claudin from an adjacent EC to create
the “primary closure” of the TJ, and the carboxylic
end of each protein links it to cytoplasmic ZO-1,
ZO-2, or ZO-3.

In brain tissue, claudin 1/3, 5, and 12 have been
identified [6]. Along with occludin, claudin 1/3 and 5
are present in the endothelium. Claudin-5 has been
shown to be expressed particularly in brain capillary
endothelial cells (BCECs) [195]. Immunocytochemi-
cal analysis of the human cerebral cortex revealed
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similarities in expression pattern between claudin-5,
occludin, and JAM-1 [224].

Occludin

Occludin is a phosphoprotein larger than claudin
(60 kDa), but it also consists of four transmembrane
domains [18]. The two extracellular loops of claudin
and occludin form the paracellular component of the
TJ, and the cytoplasmic domain is tightly connected
with ZO proteins.

Occludin expression has been found in rodents and
humans, but not human newborns or fetuses. Recent
experiments have shown that occludin expression is
highest among those of all junctional proteins. Immu-
nocytochemical studies revealed numerous signals for
occludin localized either to membranes of adjacent
ECs or to the crevasse between them [224].

It seems that occludin function is regulatory and
may influence paracellular transport [86]. Occludins
and claudins form heteropolymers and transcellular
tracts containing channels for the selective transport
of ions and hydrophilic molecules [131]. Further-
more, occludin may be involved in maintaining BBB
electrical resistance and aqueous pore formation [218].
These facts, together with the relationships existing
between occludin and claudin, suggest the contribu-
tion of these proteins to the selectivity of TJ-associ-
ated diffusion [163]. Their presence seems to be es-
sential for the proper function of TJs and the BBB.

Junctional adhesion molecules (JAMs)

These molecules belong to third group of membrane
proteins involved in TJ construction. They are immu-
noglobulins with molecular masses around 40 kDa.
Their single transmembrane domain is linked with an
extracellular fragment consisting of two “immunoglo-
bulin-like” loops [163].

To date, three members of this family (JAM-1,
JAM-2, and JAM-3) have been identified in the ro-
dent brain. In addition, JAM-1 and JAM-3 are local-
ized to brain vessels. Recently, Vorbrodt et al. [224]
found JAM-1 in the human cerebral cortex. Immuno-
cytochemical analysis exposed signals representing
JAM-1 distributed unevenly in interendothelial junc-
tions, where it was found both alone and forming
small clusters.

JAMs may play a role in cell adhesion and mono-
cyte migration through the BBB [159].

Cytoplasmic proteins

Cytoplasmic proteins implicated in TJ construction
include zonula occludens proteins (ZO-1, ZO-2, and
ZO-3), cingulin, and 7H6.

ZO proteins are membrane-associated guanyl
kinase-like proteins (MAGUKs). They are composed
of three PDZ domains (PDZ1, PDZ2, and PDZ3), one
SH3 domain, and one guanyl kinase-like domain
(GUK). These domains are important because of their
role in protein arrangements, and consequently in
plasma membrane integrity. Immunosignals of ZO-1
were frequently seen as complexes in short fragments
of the junction with long unlabeled intervals [224].

It was shown that the PDZ1 domain of ZO proteins
binds directly to the carboxylic end of claudin [95],
whereas occludin interacts with the GUK domain in
ZO-1 [136]. Furthermore, JAM proteins bind directly
to ZO-1 and other PDZ-containing proteins [63], with
actin connected to the carboxylic ends of ZO-1 and
ZO-2 [82]. In addition, immunocytochemical obser-
vations by Vorbrodt et al. [224] revealed a close struc-
tural relationship between immunolabeled occludin
and ZO-1 [224].

Another junction-associated protein is 155 kDa
7H6, a phosphoprotein correlated with TJ imperme-
ability to ions and large molecules [182]. In contrast
to ZO-1, 7H6 may detach from the TJ when ATP lev-
els fall; this detachment results in increased paracellu-
lar permeability. It therefore maintains its relationship
with the functional state of the junction [135].

Cingulin is a 140–160 kDa phosphoprotein local-
ized at the cytoplasmic side of TJs. It has been shown
that cingulin binds to ZO proteins, myosin, and AF-6,
and this binding implies its role as a scaffold between
transmembrane proteins and the cytoskeleton [45].

Other cytoplasmic proteins with adaptor, regula-
tory, and signaling functions are: Ca2+-dependent ser-
ine protein kinase (CASK), partitioning defective pro-
teins (PAR3 and 6), multi-PDZ-protein 1 (MUPP1),
membrane-associated guanylate kinase with inverted
orientation of protein-protein interaction domains
(MAGI-1, -2, and -3), small GTPases, G-protein sig-
naling 5 (RGS5), and ZO-1-associated nucleic acid-
binding protein (ZONAB). The recently discovered
junction-associated coiled-coil protein (JACOP) may
take part in binding the complex to the cytoskeleton [6].

On the basis of the above remarks, an assumption
can be made regarding the role of TJ proteins. It
seems that they not only maintain the integrity of the
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junction but also provide structural support for the
brain endothelium due to the multiple connections be-
tween them. Disturbances in this arrangement influ-
ence cell structure as well as TJ integrity. Consequently,
BBB functions and CNS homeostasis will be altered.

Adherens junctions (AJs)

Adherens junctions provide a second example of
tightening structures between ECs in which trans-
membrane proteins are represented by the large fam-
ily of cadherins. Cadherins interact with each other
homotypically when calcium ions are present [206].
In AJs, catenins play a role analogous to that of ZOs
in TJs by anchoring cadherins to the actin cytoskele-
ton. It is believed that �- and �-catenin mediate cad-
herin connection to �-catenin, which in turn links the
whole complex to the cytoskeleton [144]. Interest-
ingly, recent experiments revealed the presence of
a new catenin in the ECs. p120 Catenin binds prefer-
entially with VE-cadherin (vascular endothelial cad-
herin), but the significance of this discovery to BBB
functioning requires further studies [11].

Studies have revealed that VE-cadherin and caten-
ins are present in the human cortex. Numerous immu-
nosignals for VE-cadherin were observed by Vorbordt
et al. [224]. They were scattered along the junction,
and the majority were located in or close to the cleft.
Conversely, immunosignals representing catenins
were much more random and localized further from
the cleft (�-, �-, and p120 catenin) or in its close prox-
imity (plakoglobin) [224].

In addition, studies have shown that human AJs ex-
press platelet endothelial cell adhesion molecule-1
(PECAM-1), which takes part in shaping AJs via in-
teractions with �-catenin [130].

The proximal spatial organization of proteins com-
prising AJs and TJs indicates that both junction types
contribute to the human BBB [224]. Moreover, evi-
dence exists that ZO-1 and catenin cooperate, which
suggests that TJs and AJs work in concert [131]. Nev-
ertheless, an observation-based hypothesis suggests
that cadherins and catenins anchor ECs to pericytes or
smooth muscle cells during the development and
maturation of the BBB in certain species (e.g.,
chicken). This hypothesis therefore implicates these
proteins in roles different from those they play in

human-type BBB microvessels [224]. These findings
suggest that species-related differences exist between
components of BBB junctions.

Transporters

The physiological function of the BBB is essential in
the CNS. For instance, it is important for both the in-
activation and reuptake of neurotransmitters after
their pre-synaptic secretion. Furthermore, one of the
major functions of the BBB is the regulation of the
transport of nutrients and other molecules into and out
of the brain. Thanks to TJs, only lipid-soluble sub-
stances and substances possessing a transportation
system can cross the BBB [37, 152]. Taking all of
these facts into account, the importance of under-
standing BBB functions (especially in light of various
CNS disorders) seems obvious [149].

In addition to their other functions, tight junctions
between brain ECs divide the membranes of ECs into
two sides: a blood-facing luminal membrane and
a brain-facing abluminal membrane. This division
also accounts for proteins present in each part of the
cell membrane, and joint distinctiveness of these
membranes determines if and how quickly particles
traverse the BBB [83]. In 1985, the supposition was
made that the blood-brain influx system is of key im-
portance for the permeability of CNS-acting drugs
and nutrients. Because of this, molecular BBB trans-
port has been analyzed mainly in this aspect. Subse-
quently, amino acid transporters were discovered
[49]. When it was more recently found that P-gp
(poly-glycoprotein) takes part in xenobiotic efflux
[187, 216], the BBB transport system began to be re-
garded as a far more complex system [147].

Recently, a novel method for quantitative focused
proteomics has been developed. This state-of-the-art
technique allowed for the construction of a quantita-
tive atlas of brain capillary endothelial cell membrane
transporters (Mdr1a, Mrp4, Bcrp, 4F2hc, Asct2,
Glut1, Mct1, Lat1, Oat3, Oatp2, Oatpf, and Taut).
Both existing data and further usage of the technique
may provide great insight into the complex physiol-
ogy and pharmacology of the BBB transportation sys-
tems [102].
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The barrier and ATP-binding cassette

(ABC) transporter superfamily

ATP-binding cassette transporters comprise one of the
largest protein families, and they are crucial for a num-
ber of biomedical aspects like drug transport and re-
sistance to cancer and xenobiotics [31]. These trans-
porters are membrane proteins consisting of many do-
mains that use ATP-bound energy for the transport of
solutes across the cell membrane in all mammals [98].
Members of this family include MDRs (Pgp), MRPs
(ABCC family), and BCRP (Fig. 2).

Multidrug resistance proteins (MDRs)

MDRs were primarily recognized in mammalian tu-
mor cells, where they confer multidrug resistance
[77]. Their encoded protein product is P-glycoprotein
(Pgp), a 170 kDa transporter for a broad variety of
substrates [123]. It was the first ABC transporter lo-
calized in the human BBB [46, 213]. Subsequent de-
tection in numerous other mammals (e.g., monkeys,
rats, mice, and pigs) suggested its importance as a BBB

defense system against supposedly dangerous lipo-
philic endo- and xenobiotics [184].

Two known MDRs (Pgps) exist in humans. MDR1
Pgp is encoded in humans by the MDR1 and in ro-
dents by the Mdr1a and Mdr1b genes. MDR1 Pgp is
involved in the exertion of numerous amphipathic and
hydrophobic compounds (including drugs) from tu-
mor cells. Under normal conditions, it functions as an
efflux pump existing in endo- and xenobiotic-elimi-
nating organs (e.g., the kidney and liver), as well as
tissues responsible for protection from xenobiotic en-
try (e.g., the small intestine, testes, placenta, and BBB)
[77, 123, 185]. Interestingly, experiments revealed far
more abundant expression of Mdr1a in the BBB than
in the liver or kidney [102].

MDR2 Pgp, which is encoded by the MDR2 and
corresponding Mdr2 genes, is present in the canalicular
membranes of hepatocytes and functions as a phos-
phatidylcholine translocase. It does not influence
multidrug resistance [55, 77, 185].

Mdr1 Pgp expression has been shown in mice brain
capillary endothelial cells (BCECs) [187], where it im-
munohistochemically localizes in the luminal mem-
branes [25, 55, 73, 186, 201] (Fig. 2). Therefore, its
substrates that enter the EC are immediately secreted
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Fig. 2. Membrane localization and substrates of the BBB transportation systems. Explanations are in the text



back into the blood [123]. Its protective function has
been shown in studies in which Mdr1a-deficient mice
expressed much higher sensitivity to a neurotoxin
(ivermectin) than wild type animals [17]. Those re-
sults underline the importance of Mdr1a in protection
against toxic compounds in the CNS.

Experimental data have also suggested the exis-
tence of a CNS-targeted drug delivery pathway occur-
ring through co-administration with Pgp inhibitors.
Generally, more lipid-soluble substances more easily
penetrate brain tissue. Many lipid soluble drugs useful
in therapy are substrates for ABC efflux transporters,
however, and their uptake by brain is thus inhibited.
Studies show that the brain penetration of drugs that
are Pgp substrates can be increased in Mdr1 knock-out
mice up to 100-fold, although such penetration has
consequences for the toxicity of the compounds
[186]. Furthermore, Mdr1a-deficient mice exhibited
significantly higher penetration of ivermectin and
a number of other compounds (e.g., HIV protease in-
hibitors, immune suppressants, digoxin, dexametha-
sone, and anticancer drugs) [17]. Similarly, an in-
crease in drug brain penetration was observed with
the use of Pgp inhibitors as well [31, 124].

Recently, it has been shown that Pgp is expressed
dually in brain [223]. Under normal physiological
conditions, Pgp is primarily expressed by ECs as well
as parenchymal and perivascular astrocytes. Patho-
logical states (seizures) upregulate Pgp expression in
these other cell types and increase its de novo synthe-
sis in neurons [222, 223]. These data suggest a more
complex role for Pgp than previously supposed.

Recent experiments had shown genetic polymor-
phism of intestine-derived Pgp, and further data sup-
port this assumption in other organs [70, 87]. There is
a chance that such a polymorphism confers differ-
ences in BBB Pgp functioning between individuals.
Nevertheless, whether genetic polymorphisms ac-
count for brain-derived Pgp as well as Pgp’s associa-
tion with specific functions remain to be revealed.

MDR-associated proteins (MRPs, ABCC family)

To date, the ABCC family of transporters consists of
12 members including MRP1-9 (Fig. 2). Their expres-
sion at the BBB has been confirmed for several ani-
mal species. MRP1 and MRPs4-6 have been detected
in primary cultured bovine brain microvessel ECs and
the capillary-enriched fraction from bovine brain ho-
mogenates [236] along with MRP2 at the luminal ECs

membranes of isolated capillaries from rat and pig
brain [134]. Furthermore, cDNA array analysis re-
vealed high MRP1 mRNA levels and low levels of
MRP2, MRP3, and MRP5 mRNAs in human BCECs.
While these transporters are able to transport neutral
organic drugs, they primarily transport organic anions
[32]. Nevertheless, it has to be emphasized that the
subcellular localization of most of these transporters
remains to be elucidated or confirmed (MRP2). Only
luminal localization would be relevant in the restric-
tion of substrate brain penetration [123].

The best characterized members of this family of
transporters are MRP1 and 2. MRP1 is a primary leu-
kotriene C4 transporter. It confers protection against
toxic compounds; when overexpressed, it also medi-
ates resistance to numerous antitumor agents (e.g.,
vincristine and daunorubicin) [170].

MRP2, also a canalicular multispecific organic an-
ion transporter (cMOAT), is expressed in the kidney,
liver, and small intestine. Studies show that it is a sig-
nificant part of hepatocytic detoxification system,
where it removes anionic glucuronides along with
endo- and xenobiotic-derived glutathione conjugates
and unconjugated organic anions into the bile [113].

Experiments with MRP inhibitors (e.g., probene-
cid, MK-571) have indicated their role in BBB per-
meability. After inhibitor application, either drug in-
filtration into the brain is enhanced or drug efflux
from isolated EC is inhibited [124]. Furthermore,
other experiments have revealed that MRP2 expres-
sion restricts the transport of the anti-epileptic drug
phenytoin through the BBB.

Recently, the role of MRP4 has been investigated
in Mrp4 knock-out mice [120]. The results of this
study exhibited the dual characteristics of this trans-
porter’s expression. MRP4 was expressed at the lumi-
nal side of brain capillaries, whereas it was expressed
at the basolateral membrane in the choroid plexus.
Furthermore, it has been shown that MRP4 limits the
blood-to-brain and blood-to-CSF transport of sub-
strate drugs (e.g., topotecan). The authors of this work
suggested that MRP4 acts to inhibit the brain penetra-
tion of toxic anionic compounds as well as therapeutic
organic anions and transports toxic metabolites (e.g.,
1-napthol glucuronide) from the brain.

Breast cancer resistance protein (BCRP)

Another protein that seems to be important in BBB
transport and permeability is BCRP (Fig. 2). Its simi-
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larities with Pgp’s localization in tissues suggest its
possible role in the protection from xenobiotics [186]. It
was primarily discovered in a chemotherapy-resistant
breast cancer cell line. Recent experiments revealed its
presence at the luminal membrane of pig, mouse, and
human BCECs. Moreover, BCRP expression in BBB
cells was stronger than that of MRP1 or Pgp. Experi-
ments with mdr1a knock-out mice showed upregulation
of BCRP in brain capillaries in response to the lack of
Pgp. In addition, BCRP inhibition resulted in reduced
penetration of prazosine and mitoxantrone.

Recent experiments with Bcrp knock-out mice re-
vealed that BCRP limits the availability as well as
brain and male reproductive system penetration of
phytoestrogens (e.g., daidzein and genistein) after their
oral administration. BCRP also extruded these com-
pounds from the placenta to the blood. These result
show BCRP’s protective role against unfavorable ef-
fects of plant-derived estrogen-like compounds [64].

How ABC transporters distinguish and translocate
their substrates still remains to be elucidated [5]. In
addition, the overlap between their substrates also has
to be explained.

The barrier and the solute carrier family

(SLC family)

The SLC family of transporters is an important part of
the organic anion efflux system. It consists of organic
anion transporting polypeptides (OATP/SLCO) and
organic anion transporters (OAT/SLC22A). They co-
operate with MDRs and MRPs in the removal of xe-
nobiotics from the brain.

A total of 300 genes belonging to the superfamily
have been divided into 43 families, and the
SLCO/SLC21 and SLC22A families demonstrate
multispecificity and play a role in the BBB efflux
transport system of organic compounds (Fig. 2).

SLCO/SLC21 (Oatp/OATP) family

Oatp/OATPs are expressed in numerous tissues like
the choroid plexus, lung, heart, intestine, kidney, pla-
centa, testis, and BBB. However, some of them are se-
lectively expressed in the liver and play a role in
endo- and xenobiotic elimination [207]. Numerous
amphipathic organic solutes (e.g., bile salts, organic

dyes, steroid conjugates, thyroid hormones, neuroac-
tive peptides, and various drugs) are substrates for
Oatp/OATPs, and many of these are polyspecific or-
ganic anion transporters [132]. Of the fourteen mem-
bers of this family, expression of Oatp1a4 (Oatp2),
Oatp1a5 (Oatp3), and Oatp1c1 (Oatp14) has been
shown in brain microvessels (Fig. 2).

Studies revealed abundant Oatp1a4 expression in
the brain [7, 145], where it is localized at the luminal
and abluminal membranes of the capillaries as well
as on the basolateral membrane of the choroid plexus
ECs [73]. Its substrate specificity is broad and in-
cludes amphipathic organic anions (bile acids, steroid
conjugates), cardiac glycosides (digoxin, ouabain),
bulky organic cations (N-(4,4-azo-n-pentyl)-21-deo-
xyajmalinium, N-methylquinidine, N-methyl-quinine
and rocuronium), and anionic peptides (BQ-123,
[D-Pen2,D-Pen5]-enkephalin, deltorphin II) [7, 72, 145,
173, 220]. Asaba et al. [16] reported that the Oatp1a4
(oatp2) transporter is involved in dehydroepiandros-
terone (DHEAS) elimination through the BBB [16].
Moreover, membrane transporter localization [73]
supports the theory that BBB-expressed Oatp1a4
(oatp2) plays a role in DHEAS efflux transport. Inter-
estingly, studies also suggest that is involved in up-
take process of [D-penicillamine 2,5]-enkephalin and
taurocholate [51].

Oatp1a5 expression has been observed in the brain,
small intestine, lung, retina [226], BBB, and choroid
plexus [116, 150]. Oatp1a5 is responsible for the up-
take of amphipathic organic anions, including bile ac-
ids, steroid conjugates, and thyroid hormones, from
the CSF [7, 40, 116, 226]. Although its association
with brain capillaries has been shown by immuno-
fluorescence, its exact membrane localization remains
to be determined [150].

The only human ortholog, OATP1A2, is known to
be expressed in the lung, liver, kidney, and testis as
well as more abundantly in the brain [8]. Although its
membrane localization remains unknown, more pre-
cise immunofluorescence studies have suggested its
localization in BCECs [71]. Known substrates include
amphipathic organic anions, type II organic cations,
and peptides ([D-penicillamine 2,5]-enkephalin, del-
torphin II) [33, 72, 115].

Apart from DHEAS, it has been shown that Oatp1a4
(Oatp2) and OATP1A2 (OATP-A) are involved in the
transport of other steroids (estrone-3-sulfate, estradiol-
17B-glucuronide), thyroid hormones (T3 and T4),
drugs (fexofenadine), cationic compounds (rocuronium,
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ADP-ajmalinium), and peptides exerting neuroactiv-
ity ([D-penicillamine 2,5]-enkephalin) [51, 77, 199].
On the basis of those facts, a supposition can be made
that BBB-localized Oatp1a4 (Oatp2) and OATP1A2
(OATP-A) work as either 1) efflux pumps for both
substrates synthesized in the brain and active in the
margin and waste products designated for excretion
or 2) influx pumps for neuroactive compounds like
opioid peptides [77].

Oatp1c1 was originally described as the BBB-spe-
cific anion transporter 1 (BSAT1) [122]. Studies re-
vealed its luminal and abluminal membrane localiza-
tion in rat and mouse brain capillaries as well as at the
basolateral membrane of the mouse choroid plexus
[200, 214]. Among its substrates, the highest transport
activities have been demonstrated for thyroxine and re-
verse T3. In addition, it is able to transport organic ani-
ons (e.g., E217�G, cerivastatin, and troglitazone sul-
fate) [200]. Similarly to Oatp1c1, the human ortholog,
OATP1C1 (SLCO1C1) has the highest transport effi-
ciency for thyroxine and reverse T3. Furthermore, it is
also widely expressed in the brain (except for the cere-
bellum) as well as testis Leydig cells [166].

SLC22 family

To this family belong organic cation transporters
(Oct/OCT, SLC22A1-3), organic cation/carnitine
transporters (Octn/OCTN, SLC22A4, -5), organic an-
ion transporters (Oat/OAT, SLC22A6-8, -10, -11), and
related transporters (e.g., URAT1/renal specific trans-
porter (RST) (SLC22A12) and CT2 (SLC22A16).
BBB-expressed members include OAT3, OCTN2,
and RST [65, 66] (Fig. 2).

Oat3 is a homolog of Oat1 expressed in the liver, kid-
ney, brain, and eye [117], but the molecular mass of the
protein expressed in brain is greater than that in the kid-
ney due to differences in its glycosylation state. Immu-
nochemical analysis of rat brain capillaries revealed
abluminal localization of the Oat3; but weak signals
were also visible at the luminal side [107]. Moreover,
mRNA for Oat3 was also detected in immortalized rat
BCECs [146]. In the human choroid plexus, OAT1 and
OAT3 expression has been shown; however, their
membrane localizations remains to be determined [10].

Oat3 substrates include amphipathic organic anions
(E217�G, estrone sulfate, DHEAS), hydrophilic or-
ganic anions (PAH, benzylpenicillin), and organic
cations (cimetidine, ranitidine) [117, 141, 142]. In ad-
dition, it has been suggested that Oat3/OAT3 is an ex-

changer driven by an outward concentration gradient
of dicarboxylates [117, 202].

Evidences indicate that rat and mouse Oat3 can
transport homovanillic acid (HVA), the main dopa-
mine metabolite [138, 148]. The localization supports
the hypothesis of its role in brain-blood HVA efflux
transport. In addition, many anionic metabolites of
neurotransmitters (but not neurotransmitters them-
selves) inhibit HVA transport by Oat3 [138]. This in-
dicates the possibility of Oat3 involvement in the ef-
flux transport of various neurotransmitter metabolites.
However, it has to be emphasized that an inhibitor
does not necessarily need to be a substrate.

Renal-specific transporter (RST) is a mouse homo-
log of the urate transporter. Its expression has been
predominantly shown in the kidney. Further experi-
ments led to its detection in the brain capillary-
enriched fraction and choroid plexus, but its mem-
brane localization remains unknown [93]. It has been
supposed that RST is a facilitative transporter able to
mediate efflux [93] and coordinate Oat3 in organic
anions transportation at the BBB and BCSFB (brain-
cerebrospinal fluid barrier).

Octn2/OCTN2 is characterized as a sodium-
dependent carnitine transporter [191, 209] capable of
tetaraethylammonium (TEA) transfer [208]. Three
isoforms have been described in rodents (Octn1-3)
and two in humans (OCTN1 and OCTN2). The ex-
pression of Octn2 has been shown in primary cultured
rat BCECs as well as the whole brain [106]. Studies
revealed that loss of Octn2 causes a decrease in the
brain acetyl-carnitine concentration, suggesting its lu-
minal localization at the BBB [94]. On the basis of
experimental results, a hypothesis of its involvement
in the efflux of organic cations in exchange for plasma
carnitine or acetyl-carnitine has been developed [94,
106, 143, 146, 234].

Experimental data regarding the presence of the
members of the Oct/OCT transporter family at the
choroid plexus exist [99, 100, 203, 237], but further
studies are needed to elucidate their presence and
function at the BBB.

The barrier and amino acid transport

Polar organization accounts for transport protein lo-
calization in ECs and mediates amino acid homeosta-
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sis in the brain. At least three Na+-dependent EAATs
(excitatory amino acid transporters) and one Na+-de-
pendent system transporting glutamine exist at the ab-
luminal side, whereas facilitative transporters for glu-
tamate and glutamine are present only on the luminal
side. Such organization restricts glutamate penetration
to the brain and supports acidic and nitrogen-rich
amino acid removal from the CNS. In addition, there
are two facilitative neutral amino acid (NAAs) trans-
porters present at both membranes of ECs. These car-
riers ensure the delivery of vital amino acids to the
brain. Finally, four Na+-dependent NAAs transporters
at the abluminal side cooperate to keep NAA concen-
trations in the brain ECF at levels roughly1/10 of the
plasma concentration [83].

Large neutral amino acid facilitative transport

(L1 system)

The influx of essential amino acids to the brain is greater
than the movement of nonessential amino acids [23,
154] and occurs via facilitative and Na+-independent
transport. The transporter responsible seems to be the
L1 system (Tab. 1) [21, 30, 109, 190]. While this sys-
tem is present in both membranes, it is twice as abun-
dant at the luminal side.

Cationic amino acid facilitative transport

(y+ system)

The y+ system is comprised of an amino acid trans-
porter with affinity for amino acids containing cati-

onic side chains (Tab. 1). Interestingly, it shows a frail
interaction with NAAs in the presence of Na+ [125,
229]. The y+ is system present on both sides and is
more abundant at the abluminal membrane.

Facilitative glutamine transport (n system)

The BBB glycine transport system has been described
by Lee et al. [119] not to demonstrate trans-stimula-
tion, and it is similar to that existing in hepatic plasma
membrane vesicles [156]. It exists only at the luminal
membrane [119] and is inhibited by aspargine and his-
tidine.

Facilitative transport of acidic amino acids

(xG- system)

It has been suggested that glutamate transport is of
a facilitative nature and is mediated by the xG- trans-
porter [26]. Those data are supported by the results of
Lee et al. [119], who found facilitative transport only
at the luminal side that mediating transport from the
ECs to the plasma.

The barrier and Na+-dependent amino

acid transport

Na+-dependent systems include the A system (alanine-
preferring), ASC system (alanine-, serine- and cyste-
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Tab. 1. Amino acid transporters localized at the endothelial cells of the BBB

Transporter Na+-dependent/facilitative
Membrane

Substrates
Luminal Abluminal

L1 –/+ ++1 + Asn, Gln, Leu, Val, Met, His, Ile, Tyr, Trp, Phe, Thr

y+ –2/+ + ++ Lys, Arg, Orn, homoarginine

xG- –/+ + – Asp, Glu

n –/+ + – Asn, Gln, His

Na+-LNNA +/– – + Gly, Ala, His, Thr, Met, Val, Leu, Ile, Phe, Tyr, Trp

A +/– – + Ala, Ser, Pro, Asn, Gln

ASC +/– – + Gly, Ala, Ser, Thr, Met, Val, Leu, Ile, Phe, Tyr, Trp

N +/– – + Ser, Asn, Gln, His

EAAT +/– – + Asp, Glu

1 Number of pluses corresponds to abundance. 2 Shows a frail interactions with NAAs in presence of Na+



ine-preferring) [80, 211, 215], N system (glutamine-,
asparagine- and histidine-preferring) [119], excitatory
amino acid transporter (EAAT) family (aspartate- and
glutamate-preferring) [90, 152], and Na+-LNAA (es-
sential large neutral amino acid) system. Evidence
suggests that only facilitative transport occurs at the
luminal membrane [42, 154, 192]. Therefore, Na+-de-
pendent transporters are present only at the abluminal
membranes. Using the Na+ gradient between ECF and
ECs, they are responsible for the removal of AAs
from the CNS.

Na+-dependent large neutral amino acid

transport (Na+-LNAA system)

The Na+-LNAA system is a Na+-dependent, BCH-inhi-
bited transporter of large neutral amino acids (LNAAs)
that is localized at the abluminal membrane [151]. Its
kinetics differ from those of any other known trans-
porter. In addition to Na+-dependency and BCH-
inhibition, it is also voltage sensitive. Na+-LNAA
substrate specificity is similar to that of L1 and allows
gradient-oriented entry of essential LNAAs (Tab. 1).
Those facts suggest its involvement in the control of
the LNAA brain content [83].

Na+-dependent small nonessential neutral

amino acid transport (A system)

The A system differs from other Na+-dependent trans-
porters by acceptance of N-methylamino-isobutyric
acid (MeAIB) as a substrate [43]. It is voltage sensi-
tive [153], prefers alanine [155], and is inhibited by
proline, histidine, alanine, serine, asparagine, and glu-
tamine.

The hypothesis of A system presence at the ablumi-
nal membrane of the BBB is supported by the results
of experiments on isolated rat brain capillaries and
isolated abluminal membrane vesicles from bovine
BCECs [28, 180]. Expression of all three isoforms of
system A (ATA1, ATA2, and ATA3) has been seen in
the rat brain capillary rich fraction and conditionally
immortalized rat BCECs (TR-BBB) cells, ATA2
showed the greatest expression. This result suggests
that this isoform exactly is responsible for system A
transport at the BBB [147]. Under hypertonic condi-
tions, ATA2 transcription is up-regulated. This find-
ing suggests that the BBB system A is regulated by
the osmolarity. Thus, ATA2 osmolarity regulation

may play a role in maintaining proper BBB function-
ing under pathological conditions [147].

Na+-dependent large and small neutral amino

acid transport (ASC system)

The presence of this system in abluminal membranes
was confirmed after system A blockade with MeAIB
[80, 211, 215]. The ASC system seems to be voltage in-
dependent with wide substrate specificity (Tab. 1) [153].

Na+-dependent nitrogen rich amino acid

transport (N system)

This system is voltage independent [153]. The possi-
bility of Na+ replacement with Li+ suggests its resem-
blance to the N system existing in the liver [108, 153].
Transported AAs are listed in Table 1.

Acidic amino acid transport (EAAT family)

It is believed that the BBB might be the control site
for the maintenance of nontoxic glutamate levels. Ex-
periments show at least three Na+-dependent gluta-
mate transporters existing within the BBB. When
combined, these transporters demonstrate high gluta-
mate affinity. O’Kane et al. [152] have shown the
presence of EAAT1, 2, and 3 protein in bovine brain
endothelial cells. Moreover, they have shown that
each of these transporters is present at the abluminal
membrane of ECs, voltage dependent, and K+-sens-
itive. The authors established the activity ratio of
EAAT1:2:3 as approximately 1:3:6 [152].

To date, two Na+-dependent glutamate transporters
from rat brain, GLAST1 [197] and GLT-1 [165],
along with the rabbit brain transporter EAAC1 [103]
have been isolated and cloned. Interestingly, homo-
logues of each of these transporters have been identi-
fied in the human brain [15] as EAAT1 (GLAST),
EAAT2 (GLT-1), and EAAT3 (EAAC1). In addition,
EAAT4 in the human cerebellum [68] and EAAT5
[14] in the human retina have been isolated. Moreo-
ver, the facilitative transport of glutamate has been
described across the luminal [26] membrane, and it
probably permits blood-EC glutamate transport.

The above-mentioned data suggest some actions of
glutamate that occur in the CNS. It is thought that ex-
tracellular glutamate is transported into astrocytes,
neurons, and ECs by at least three transporters. While
glutamate in astrocytes is converted into glutamine

610 Pharmacological Reports, 2008, 60, 600–622



and released, it can be stored in neurons for synaptic
transmission. In ECs, combined glutamate influx and
glutaminase-derived glutamate quickly increases its
intracellular content to levels exceeding the plasma
concentration. In such cases, facilitative transport at the
luminal membrane expels glutamate into the blood
[26]. Blood-EC transport is also possible, but further
movement would be difficult because of the high Na+

gradient between the ECF (extracellular fluid) and ECs
[34]. Additional difficulty results from the absence of
facilitative transporters at the abluminal membrane.

Gathering those facts, the BBB is actively involved
in the maintenance of CNS glutamate homeostasis. In
hypoxia or ischemia, neurons and astrocytes depolar-
ize and glutamate transporters running in reverse to
increase of extracellular glutamate concentration
[204]. Along with metabolic slowing, acidosis further
upregulates astrocytic reverse transport [75]. The ECF
glutamate concentration may reach almost toxic lev-
els. At this point, EC transporters have the opportu-
nity to remove excess glutamate and maintain its
non-toxic levels; they therefore act as a protective
mechanism against glutamate neurotoxicity [152].

The barrier and brain-blood

neurotransmitter transport

�-Amino-isobutyric acid (GABA) transport

The BBB used to be considered as a retention pool for
neurotransmitters. Recently, GABA efflux through the
BBB from the brain has been shown [205], suggesting
that the BBB also acts in the regulation of neurotrans-
mitters. Experiments with TM-BBB and the mouse
brain capillary enriched fraction showed the expres-
sion of GAT2/BGT-1 (betaine/GABA transporter-1
corresponding to GAT2 in mouse) but no neuronal or
glial transporters (GAT1 and GAT3). Those results
suggest that GABA transporters expressed at the BBB
differ from those expressed in neurons and glia. Fur-
ther experiments showed the endothelial localization
of GAT2/BGT-1 [205] and suggested its role as a BBB
efflux transporter of GABA.

Norepinephrine and serotonin transport

Other transporters present in mouse brain capillary
endothelial cells (BCECs) include the norepinephrine

transporter (NET, localized at the abluminal mem-
brane) and serotonin transporter (SERT, localized to
both the luminal and abluminal membranes) [225].
Those transporters might work as a neurotransmit-
ter-inactivating system in the vicinity of brain capil-
laries. This supposition was made on the basis of the
hypothesis that brain microvasculature is regulated by
both monoamines released from adrenergic and sero-
tonergic neurons as well as the expression of adrener-
gic and serotonergic receptors in brain microvessels
[44, 59, 112, 175].

The function of the luminally-localized SERT re-
mains to be elucidated. Based on pharmacological se-
rotonin function, one may emphasize SERT’s role in
maintaining cerebral blood flow by serotonin clear-
ance from cerebral intravascular space to inhibit
serotonin-enhanced blood coagulation. Similarly, Ga-
napathy et al. [71] suggested that SERT localized at
the human brush-border membrane facing the mater-
nal blood may be involved in maintaining utero-
placental blood flow [20, 71].

The barrier’s function in the maintenance

of CNS conditions

It seems logical that factors influencing the CNS may
regulate the BBB and its proper barrier functions.
Taurine (2-aminoethanesulfonic acid) is thought to
play a role in CNS development, neuromodulation,
and osmoregulation. Because of its limited biosynthe-
sis, dietary taurine is important in maintaining its
proper level. Studies on primary cultures of bovine
BCECs revealed that a taurine transport system exists
on both the luminal and abluminal sides of BCECs
[210], supporting the hypothesis of its involvement in
brain taurine supplementation. Furthermore, hyper-
tonic conditions induce taurine uptake and taurine
transporter (TAUT) mRNA transcription in TR-BBB
cells [104]. This may mean that TAUT, in addition to
ATA2 (System A isoform), is involved in CNS
osmoregulation.

The increase of ISF taurine levels during ischemia
has been described to exert a neuroprotective effect
[69, 127]. Studies revealed that TNF-� induces the
uptake of taurine and its transporter mRNA transcrip-
tion in TR-BBB cells, and TNF-� is induced in brain
ischemia or traumatic injury. Therefore, the up-re-
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gulation of BBB taurine transport may occur in brain
cell damage.

The barrier and energy metabolism

The brain cannot store its main energy substrate – glu-
cose. BBB cells express glucose transporter 1 (GLUT1),
which therefore plays a crucial role in glucose supple-
mentation to the brain [48]. For energy homeostasis,
however, energy storage is necessary in addition to
synthesis.

Creatine seems to play such role in the brain, and
its concentration in the brain is about 180-fold higher
than that in the plasma. Energy is stored in phospho-
creatine as ATP-derived phosphate sufficient for ATP’s
regeneration from ADP when needed [126]. Creatine
biosynthesis takes place mainly in the kidney and
liver, and it can be supported by dietary supplementa-
tion. Therefore, the circulating blood pool supplies
muscle creatine via the creatine transporter (CRT).
Conversely, this route seems to be limited for the
brain [53]. Ohtsuki et al. [147] showed that condition-
ally immortalized mouse brain capillary endothelial
cells (TM-BBB) have a creatine transport system me-
diated by CRT. This system allows the BBB to accu-
mulate creatine against its concentration gradient [89,
147, 212]. Those results suggest two roles for the
BBB in the energy homeostasis of the CNS. It acts as
both a pathway for the energy source as well as a path-
way for the energy buffer. Defects in either system
can cause alterations in energy homeostasis followed
by CNS dysfunction.

BBB studies on physiological functions revealed
new regulation and transport systems. Regarding
those facts, it seems clear how important the BBB is
for maintaining the proper CNS environment; its sig-
nificance becomes even greater during pathological
conditions [9]. Further studies are needed, however,
for complete elucidation of its complex role [149].

Cellular interactions at the BBB

Describing the BBB’s structure as a cell complex im-
plies more than a morphological set of few types of

cells and their surrounding structures. The cells form-
ing BBB depend on themselves not just anatomically
and spatially but also biochemically and autocrini-
cally. The BBB is a biochemical-anatomical net that
permits wide cellular cross-talk [21]. Due to the close
contact of ECs and astrocytes, the local concentration
of secreted substances is high. Three-dimensional
microanatomical visualizations of glial-endothelial
interactions suggest the existence of specific “micro-
domains,” in which one EC is bound to one astrocyte
[101]. Thus, it becomes apparent that microvessels,
neurons, and glia are organized into perfectly planned
neurovascular units regulating cerebral blood flow
[91]. In these units, even the proper spatial (apical/ba-
sal) polarity of EC/astrocyte composition is signifi-
cant [1].

Many experiments confirm the important role of
astrocytes in BBB formation and functioning at the
physical, transportation, and metabolic levels [38, 54,
84, 97, 128, 169, 177, 196]. Experiments revealed that
astrocytes are key in the formation of tube-like struc-
tures from ECs and pericytes. These experiments sug-
gest that direct EC-astrocyte connections are indis-
pensable for the morphogenesis and development of
a vessel wall [169]. The involvement of other cells
present at the BBB has also been shown in barrier de-
velopment [27, 61, 62, 88, 169, 183, 235], and so has
the influence of ECs on astrocytes [67, 133]. Further-
more, the up-regulation of the expression of many
transporter systems, including �-glutamyl transpepti-
dase (�-GTP), GLUT-1, L-system, A-system, and
Pgp, have been observed in ECs to exhibit glial influ-
ence [24]. Reversed influence has also been observed.

The list of astrocyte-originating factors essential
for the proper differentiation of brain endothelial cells
is still growing [2]. Evidence indicates that astro-
cytes-derived factors like TGF-� are responsible for
the decrease in expression of the endothelial tissue
plaminogen activator (tPA) and thrombomedullin
(TM) genes. In addition, GDNF (Glial Derived Neu-
rotrophic Factor) is responsible for BBB maturation.
Moreover, angiopoetin 1 (ANG1) acts on the TIE2
endothelium-specific receptor tyrosine kinase 2. A role
has also been assigned to basic fibroblast growth fac-
tor (bFGF), interleukin-6, and hydrocortisone [1, 74,
92, 118].

Another remaining question centers on how the
brain endothelium influences astrocytes and neuron
precursor cells. ECs are the source of a variety of fac-
tors that induce astrocyte differentiation. In vitro ex-
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periments with EC/astrocyte co-cultures show this
chain of dependence. For example, it has been shown
that leukemia inhibitory factor (LIF) deriving from
astrocytes causes the differentiation of astrocytes
[133, 233]. Furthermore, two-way reliance between
ECs and astrocytes causes the up-regulation of aqua-
porin-4 in astrocytic end feet [171], and the induction
of antioxidant enzymes is mediated in both types of
cells [189]. Furthermore, �-glutamyl transpeptidase,
an endothelial enzyme, is also activated in coopera-
tion with astrocytes [137].

Dividing neurons also depend on ECs. It has been
observed that dividing localize in richly vascularized
regions. More than one-third (37%) of these cells are
immunoreactive for endothelial factors [158].

Recent experiments with immortalized EC line
hCMCE/D3 cells supported the hypothesis of astro-
cytic involvement in functional BBB development. It
has been shown that treatment with cAMP-inducing
agents and coculture with primary human astrocytes
upregulates the expression of claudin-5 and occludin
by ECs, thereby contributing to the development of
the functional BBB [228].

Evidence sugests that ECs and astrocytes express
a variety of receptors for numerous agents able to
modulate brain functioning [79, 160]. Moreover,
many of those agents derive from astrocytes and ECs
themselves (e.g., ATP, endothelin-1, glutamate, IL-1�,
IL-6, TNF-�, MIP-2, NO, and I2). The signaling net-
work working within the neurovascular unit is thus
multifaceted and often rapid in action [12, 78].
Physiological signaling that modulates BBB perme-
ability may also become an advantage. For example,
tightening of the barrier could be crucial in stress or
hypoxia (e.g., because increased cAMP level causes a
rise in resistance and upregulates Pgp), whereas its
loosening may allow the passage of growth factors
and antibodies (e.g., because nerve cells derived his-
tamine mediates transient barrier opening) [1, 111].
Junctional protein expression can be altered by the
transcription factor NF-�B and thus it can influence
BBB permeability [39]. Furthermore, numerous me-
chanisms (e.g., ATP, histamine) influencing brain
endothelial amino acids and glucose transport. Evi-
dence indicates that factors released by astrocytes ex-
posed to hypoglycemic conditions are able to enhance
glucose uptake by brain ECs [172]. Cellular signal-
ling pathway involved in the modulation of such BBB
properties may depend on alterations in intracellular
Ca2+ levels [4, 139, 157, 161] mediated via serotonin,

glutamate receptor activation, or mechanical stimula-
tion [29, 47, 157]. In addition, the possibility of ATP-
mediated cross-talk involving ECs and intercellular
gap junction suggests an astrocytic or neuronal signal
propagation pathway [157]. This pathway can result
in various nutritional or metabolic responses of ECs
[35, 121, 129].

BBB and mineral/water balance of the CNS

In addition to all above-mentioned interactions and
functions, astrocytes and their end feet play a role in
the maintenance of ionic and water brain homeostasis
[193]. Due to the high number of K+ channels (Kir4.1,
rSloKCa) [167], they are appropriate for spatial buff-
ering and deposition of K+ ions in the perivascular
space. From there, ions can be recycled when needed.
K+ uptake processes result in water influx and subse-
quent cell swelling. Astrocytes assist in the redistribu-
tion of this water via AQP4 water channels localized
at their end feet [6]. Another contribution of astro-
cytes to water homeostasis involves the water influx
accompanying glutamate uptake [193].

Multiple studies revealed that brain pericytes influ-
ence numerous EC functions [13, 52, 57, 85, 88, 181].
For example, they contribute to increased TEER and
lowered barrier permeability [57]. Recently, it has
been shown that a soluble factor released from peri-
cytes (most likely angiopoietin-1) is responsible for
the upregulation of occludin expression via tyrosine
phosphorylation of the Tie-2 receptor [88].

Furthermore, studies revealed that pericytes cocul-
tured with brain ECs downregulate expression of tissue
plasminogen activator (tPA) via action of a soluble
factor. They also upregulate the release of plasmino-
gen activator inhibitor-1 (PAI-1), a known inflamma-
tory stimulus. They abundantly express antithrombin
and antifibrinolytic molecule PN-1. These facts sug-
gest that pericytes regulate endothelial fibrinolysis
[110]. In addition, pericytes seem to be involved in
endothelial differentiation, as evidenced by astrocyte/
EC/pericyte coculture studies in which they induced
the termination of differentiation and vessel matura-
tion. Finally, they may also be implicated in anti-
apoptotic mechanisms that support the survival of
capillary-like structures during culture conditions [169].
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Junction tightness regulation

ECs also regulate TJ tightness and paracellular trans-
port. Signal transduction takes place at the level of
TJs, and two pathways may be distinguished. Signals
are transferred from inside the cell to TJs, as well as
from TJs into cell to influence gene expression, cell
proliferation, and differentiation [131].

The transcellular signaling pathway regulating TJ
tightness has not yet been completely elucidated.
Numerous substances and signaling tracks, such as
Ca2+, protein kinase C, G protein, calmodulin, cAMP,
phospholipase C, and tyrosine kinases, are believed to
play a role in this system [19, 163]. Apart from the
possibility of these signals being involved in TJ as-
sembly and disassembly, they may also contribute to
the regulation of cytoskeletal rearrangements [135].

It has been shown that ZO-1 is a substrate of a ser-
ine kinase [18] and PKC, which is crucial for the for-
mation and regulation of TJs [198]. ZOs may thus be
a scaffold for PKC signal transduction on the cyto-
plasmic side of the junction [230]. Furthermore PKC�

and PKC�, atypical isotypes of PKC, are expressed
within TJs. Along with ASIP (atypical PKC isotype
specific interacting protein), it is thought that both
play a role in the establishment of cellular polarity
crucial to BBB functioning [96]. TNF-�-induced
transcription of intercellular adhesion molecule 1
(ICAM-1) at the BBB mediated by NF-�B is also
regulated by PKC� [168].

Studies revealed that G-proteins influence the as-
sembly of TJs and thus take part in TJ formation and
regulation [18]. The G�12 subunit colocalizes with
PKC� at ZO-1 intercellular contacts [60] and is impli-
cated in the development of electrical resistance
across the membrane [56]. Furthermore, increased
paracellular diffusion is correlated with rearrange-
ments in perijunctional actin [176], and studies have
revealed that small GTP-binding proteins are in-
volved in this process.

Increased cAMP levels result in increased tightness
of the junction [179]. Still, the outcome of cAMP re-
duction is a decrease of resistance. Therefore, the ex-
istence of proteins phosphorylated by protein kinase
C, whose phosphorylation state regulates the cell to
cell potency of adhesion, was proposed [114]. Fur-
thermore, studies revealed that the reconstruction of
TJs after disruption is connected with the upregulated
phosphorylation of occludin [217]. Interestingly, the

inhibition of tyrosine phosphatase in already existing
TJs causes increased permeability associated with oc-
cludin proteolysis [227].

TJ-associated proteins are not the only players in
signaling pathways regulating junctional tightness.
Experiments have suggested that �-catenin is involved
in the expression of Wnt target genes through interac-
tions with the Lef/tcf family of transcription factors
[164]. Furthermore, growth factors stimulate the dis-
sociation of the �-catenin-VE-cadherin-PECAM-1
complex from the cell membrane. This allows further
stimulation of gene expression via disengaging �-ca-
tenin.

Conclusions

Our knowledge about the structure and function of the
BBB and its particular components is still growing.
The importance of studies examining the basic as-
pects of the BBB is difficult to overestimate. How-
ever, much work has to be done to fully understand
the BBB and permit the practical implementation of
this information into clinical usage. In numerous cir-
cumstances, the permeability of the BBB increases as
a result of drug action. The increase of BBB perme-
ability during some disorders (e.g., neoplasms) is also
important, because it may be possible to diagnose dis-
eases much earlier, define tumor sizes, and properly
plan for surgical procedures.

Another practical problem is the delivery of drugs
to the CNS. Efforts are underway to develop strate-
gies increasing the BBB permeability of important
and potentially very effective new therapeutic ap-
proaches. Pathophysiological and therapeutic aspects
of the BBB should be the subject of another review.
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