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Abstract:

Chronic treatment with the benzodiazepines is well known to produce tolerance, which has been extensively documented to be at-

tributed to modifications in the �-aminobutyric acid (GABA)ergic neurotransmission. However, literature data have also suggested

the participation of different neurotransmitter systems, including glutamatergic, in benzodiazepine tolerance. The purpose of the

present study was to determine the role of nitric oxide (NO) in the development of tolerance to the motor dysfunction induced by

chronic administration of diazepam. The motor performance was assessed on the 1st and 10th day of experiment, using the rotarod

and chimney tests in mice. Treatment of animals with both non-selective NO synthase (NOS) inhibitors: N�-nitro-L-arginine methyl

ester (L-NAME), N�-nitro-L-arginine (L-NOARG) and selective NOS inhibitor: 7-nitroindazole was able to prevent the develop-

ment of tolerance to the motor impairing effect of diazepam. Moreover, administration of L-arginine, a NO precursor, facilitated the

development of diazepam-induced tolerance in rotarod test. These findings suggest that NO may be involved, at least in part, in the

tolerance to the motor dysfunction, developed during the chronic administration of diazepam in mice.
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Introduction

The benzodiazepines are a group of psychoactive

drugs that exert a number of pharmacological effects,

such as anxiolysis, sedation, hypnosis, anterograde

amnesia, muscle relaxation and anticonvulsant activ-

ity. They do so by binding to the central benzodi-

azepine receptor recognition site on the �-aminobu-

tyric acid (GABA)A receptor complex and potentiat-

ing the inhibitory effect of GABA [45, 56]. There is

a line of evidence indicating that a long-term admini-

stration of benzodiazepines results in the development

of tolerance to some effects of these drugs (including

their sedative, muscle relaxant and anticonvulsant ef-

fects), and this phenomenon limits their clinical effi-

cacy. Such treatment, even at therapeutic doses, is

also associated with the development of physical de-

pendence [10, 36]. The molecular bases for tolerance

to benzodiazepines still remain unclear. However, tol-

erance and dependence to benzodiazepines appear not

related to the pharmacokinetic mechanisms of these

drugs [5, 14, 17, 49]. It has been established that toler-

ance to benzodiazepines is associated with an adap-

tive process leading to progressive diminution in the

activity of the drug at the GABAA receptor complex
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[2, 13]. It has also been hypothesized that sensitiza-

tion of excitatory mechanisms (including the glutama-

tergic system) may be a part of compensatory mecha-

nisms to benzodiazepine-induced chronic enhance-

ment of GABAergic inhibition [2, 41].

There is evidence that nitric oxide (NO), an intra-

cellular and short-lasting retrograde messenger, is in-

volved in different peripheral and central functions [7,

9, 19, 48]. Among a number of physiological pro-

cesses in the central nervous system (CNS), such as

control of sleep [30], synaptic plasticity [32], learning

and memory formation [57], it has been shown that

NO can also participate in the mechanisms of drug

tolerance and dependence [4, 22, 28, 52, 55].

NO is synthesized from L-arginine in several tis-

sues by a reaction catalyzed by NO synthase (NOS),

which is found in three distinct isoforms: endothelial

(eNOS), inducible (iNOS), and neuronal (nNOS). En-

dothelial cells and neuronal tissues contain constitu-

tively expressed NOS isoforms, which are Ca2+/cal-

modulin-dependent, whereas inducible NOS is an iso-

form produced in macrophages and other cell types

and is Ca2+-independent. Although all forms can be

found in the CNS, because of the temporal and spatial

properties of this tissue, the specific actions on neuro-

transmission may be attributed primarily to NO pro-

duced by nNOS located in neurons [29]. It has been

observed that nNOS produced NO almost exclusively

following activation of N-methyl-D-aspartate (NMDA)

receptors [15] and has the most crucial role in mediat-

ing drug tolerance and dependence among all NOS

isoforms [54].

An increasing body of evidence suggests an inter-

action between NO and GABA, a neurotransmitter

which is closely connected with the effects of benzo-

diazepines. It has been reported that NO was able to

modulate release of glutamate and GABA in the dor-

sal striatum [47] and in the nucleus accumbens [24].

Moreover, histochemical mapping of NOS revealed

that NOS-positive neurons were co-localized with

GABA or GABA receptor in several brain regions

[53, 58]. In vivo and in vitro studies suggest that NO

modulates either release or uptake of GABA and the

activity of GABAA receptor or acts directly on GABAA

receptor [12, 18, 26, 38, 59]. Furthermore, several

studies have implicated NO-dependent pathways of

the CNS in the effects of benzodiazepines, using acute

protocols. It has been shown that inhibition of NOS

prolonged the sleeping time induced by benzodiaze-

pines [42], enhanced the anticonvulsant [43], antino-

ciceptive [44] and anxiolytic [33] effect of benzodi-

azepines. However, there are limited data obtained

with the use of chronic protocols, concerning NO and

benzodiazepine relationship.

The current study was undertaken to determine the

involvement of the NO in the development of toler-

ance to diazepam-induced motor impairment. This

was done by measuring motor coordination in diaze-

pam-administered mice after chronic treatment with

L-NAME and L-NOARG, nonselective inhibitors of

the NOS isoforms, 7-nitroindazole, a preferential in-

hibitor of nNOS [3] and L-arginine, a substrate for

NO formation.

Materials and Methods

Animals

The experiments were carried out on male albino

Swiss mice weighing 20–25 g at the beginning of the

experiment. The animals were housed in groups of ten

and maintained on a 12 h light-dark cycle at con-

trolled temperature (21°C). They received standard

rat diet and tap water ad libitum. All behavioral ex-

periments were carried out according to the National

Institutes of Health Guidelines for the Care and Use

of Laboratory Animals and to the European Commu-

nity Council Directive for the Care and Use of Labo-

ratory Animals of 24 November 1986 (86/609/EEC),

and approved by the local ethics committee.

Drugs and tolerance procedure

NG-nitro-L-arginine methyl ester (L-NAME, Sigma,

USA), NG-nitro-L-arginine (L-NOARG, Sigma, USA),

L-arginine (Sigma, USA) were dissolved in 0.9% sa-

line. 7-Nitroindazole (RBI, USA) was suspended in

a few drops of Tween-80 and then dissolved in 0.9%

saline. Diazepam (Relanium, Polfa, Poland) was di-

luted in 0.9% saline. Control animals were injected

with the corresponding vehicle.

Tolerance to diazepam-induced motor impairment

was induced by repeated (10 days), subcutaneous (sc)

administration of diazepam (5 mg/kg/day). This dose

of diazepam was chosen from the literature data,

showing the development of tolerance during the chro-

nic administration of diazepam [23, 31, 40]. L-NAME
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(50, 100 mg/kg), L-NOARG (10, 20 mg/kg), 7-nitro-

indazole (10, 20 mg/kg) and L-arginine (125, 250

mg/kg) were injected intraperitoneally (ip). The doses

of L-NAME, L-NOARG, 7-nitroindazole and L-argi-

nine, were tested in our previous experiments (data

not published) and those which did not affect the mo-

tor performance in mice were used in these experi-

ments. All substances were administered in an injec-

tion volume of 10 ml/kg.

Behavioral tests

The motor coordination of mice was measured on the

1st and 10th day of the experiment, using the rotarod

test and the chimney test.

Rotarod test

The test was performed according to the method of

Dunhann and Miya [8]. The mice were trained and

tested using a bar rotating at a constant speed of

18 rpm (2 cm in diameter). Before drug testing, the

mice were trained daily for a 3-day period. For each

training session the mice were placed on a rotating

rod for 3 min with a unlimited number of trials. Drug

testing was conducted at least 24 h after the final

training trial. During the test the mice had to remain

on the rod for as long as they could. The length of

time that the animal remained on the rod was recorded

(a 60 s maximal trial was used for the test).

Chimney test

The animals had to climb backwards up a plastic tube

(3 cm in inner diameter, 25 cm long). The mice were

trained once daily for 3 days. Motor impairment was

assessed as the inability of mice to climb backwards

up the tube within 60 s. The length of time that the

mice spent in the chimney was recorded [6].

Pretreatment times were 30 min for diazepam and

35 min for L-NAME, L-NOARG, 7-nitroindazole and

L-arginine.

Statistical analysis

Results in these experiments were analyzed by one-

way ANOVA. Post-hoc comparisons were carried out

by Tukey-Kramer test. A level of p < 0.05 was consid-

ered as statistically significant. Data are presented as

the mean ± SEM.

Results

Effects of diazepam on performance in

the rotarod test (Fig. 1A–4A) and chimney test

(Fig. 1B–4B)

The repeated (10 days) treatment of mice with diaze-

pam (5 mg/kg/day) resulted in the development of tol-

erance to its motor impairing effect, which was ob-

served both in the rotarod test and the chimney test

and manifested by statistically significant differences

between the acute diazepam-treated group (1st day of

the experiments) and chronically diazepam-treated

mice (10th day of the experiments).
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The influence of L-NAME on the development

of tolerance to diazepam-induced motor impair-

ment in the rotarod test (Fig. 1A) and chimney

test (Fig. 1B)

Administration of diazepam (5 mg/kg) at a single dose

on the 1st day of the experiment impaired the motor

coordination of mice. This effect was observed both

in the rotarod test (p < 0.001) and in the chimney test

(p < 0.01). There were no significant effects of acute

L-NAME (50, 100 mg/kg) pretreatment on the dia-

zepam-induced motor impairing effect, as measured

by the rotarod and the chimney tests on the 1st day of

the experiment. However, L-NAME at a dose of 50 or

100 mg/kg/day, coadministered with diazepam, pre-

vented the development of tolerance to the motor im-

pairment effect of diazepam, both in the rotarod test (p <

0.01) and dose-dependently in the chimney test (p <

0.05, p < 0.01, respectively) as measured on the 10th

day of the experiment. L-NAME (50 or 100 mg/kg),

given alone at a single or repeated (for 10 days) doses,

had no significant effect on the motor performance

measured by the rotarod and chimney tests.

The influence of L-NOARG on the development

of tolerance to diazepam-induced motor impair-

ment in the rotarod test (Fig. 2A) and the chim-

ney test (Fig. 2B)

Co-administration of L-NOARG with diazepam

(5 mg/kg) at a single dose (1st day of the experiment)

did not affect the diazepam-induced motor impairing
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effect, as measured by the rotarod test and chimney

test. The repeated pretreatment of L-NOARG at the

doses of 10 and 20 mg/kg with diazepam dose-depen-

dently inhibited the development of diazepam-induced

tolerance both in the rotarod test (p < 0.05, p < 0.01,

respectively) and in the chimney test (p < 0.01, p < 0.001,

respectively). There was no significant effect on the

motor coordination of mice, measured by the rotarod

test and the chimney test, following acute and chronic

L-NOARG (10 and 20 mg/kg) injection alone.

The influence of 7-nitroindazole on the devel-

opment of tolerance to diazepam-induced

motor impairment in the rotarod test (Fig. 3A)

and the chimney test (Fig. 3B)

Administration of 7-nitroindazole with diazepam

(5 mg/kg) at a single dose of 20 mg/kg (1st day of the

experiment) decreased the diazepam-induced motor

impairment (p < 0.05), in the rotarod test, but not in

the chimney test. The lower dose of 7-nitroindazole

(10 mg/kg) had no significant effect on the motor dys-

function caused by diazepam. The chronic pretreat-

ment of 7-nitroindazole at a dose of 20 mg/kg with di-

azepam (5 mg/kg) resulted in the inhibition of the de-

velopment of diazepam-induced tolerance to its motor

impairing effect. This effect was observed both in the

rotarod test (p < 0.01) and in the chimney test (p < 0.05).

Chronic administration of the lower dose of 7-nitro-

indazole (10 mg/kg) had no significant effects on the

diazepam-induced tolerance to the motor incoordina-

tion. The acute or repeated (for 10 days) administra-

tion of 7-nitroindazole alone at the doses of 10 and

20 mg/kg had no significant effect on the motor per-

formance measured by the rotarod and chimney tests.

The influence of L-arginine on the development

of tolerance to diazepam-induced motor impair-

ment in the rotarod test (Fig. 4A) and the chim-

ney test (Fig. 4B)

Co-administration of L-arginine with diazepam (5 mg/kg)

at an acute dose did not affect the diazepam-induced

motor impairing effect, as measured by both the rota-

rod test and the chimney test on the 1st day of the ex-

periment. The chronic pretreatment of L-arginine at

the doses of 125 and 250 mg/kg facilitated the devel-

opment of diazepam-induced tolerance to the motor

incoordination of mice. This effect was observed in

the rotarod test (p < 0.01 for both doses), but not in

the chimney test. There were no significant effects on

the motor coordination of mice, measured by the rota-

rod test and the chimney test, following acute and

chronic L-arginine (125 and 250 mg/kg) injection alone.

Discussion

Tolerance to benzodiazepines has been reported in

various species although the degrees of tolerance and

time course have varied markedly. Tolerance develops

after both low doses and high doses if the frequency

and duration of administration are sufficient [10, 16].

It is known that this slowly developing tolerance after
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chronic treatment with benzodiazepine receptor ago-

nists, such as diazepam, lorazepam and flurazepam is

a results of downregulation of GABAA receptor com-

plex [25, 35], changes in GABAA receptor subunit

gene expression [25, 37], functional allosteric uncou-

pling of the benzodiazepine receptor recognition site

for GABAA receptors [1, 46], and decreased coupling

between the benzodiazepine site and GABA recep-

tor-gated chloride channels [1]. However, a reduction

in the effect of benzodiazepines at the GABAA recep-

tor complex does not seem to be the only mechanism

involved in the development of benzodiazepine toler-

ance. For example, a compensatory increase in the ex-

citatory glutamatergic response, named an opposi-

tional response, has also been put forward as a means

for explaining this phenomenon [2, 41].

The present studies showed that repeated (5 mg/kg/

day sc for 10 days) administration of diazepam led to

the development of tolerance to its motor impairing

effect, both in the rotarod and chimney test. The major

findings of the current study showed that L-NOARG

and L-NAME, nonselective NOS inhibitors, pre-

vented the development of tolerance to the motor im-

pairing effect of diazepam. It is known that L-NAME

and L-NOARG are nonselective NOS inhibitors that,

besides its central activity, affect also the cardiovascu-

lar system and increase arterial blood pressure [34]

which then may affect the excitability of the central

neurons. In order to avoid the effect of arginine-de-

rived NOS inhibitors on blood pressure and muscar-

inic receptor, we used 7-nitroindazole, an inhibitor of

neuronal NOS [3]. We have observed that 7-nitro-

indazole, was also able to inhibit the development of

tolerance to diazepam, at higher dose of 20 mg/kg.

The lower dose of 7-nitroindazole (10 mg/kg) failed

to affect the development of diazepam-induced toler-

ance. It is pertinent to note that in the present study

the acute or chronic administration of a NOS inhibitor

alone did not affect the motor performance of mice,

because we used a dose range below that needed to

cause motor deficit. Additionally, in the present study

we have observed an inhibiting effect of a higher dose

of 7-nitroindazole on diazepam-induced motor deficit,

measured by rotarod test on the 1st day of the experi-

ment. It is difficult to explain and further investigation

must be undertaken to clarify this interesting effect.

Another interesting observation arising from the

present study was the facilitation of development of

diazepam-induced tolerance to motor impairing effect

in the rotarod test after chronic pretreatment with

L-arginine, an endogenous NO precursor, in combina-

tion with diazepam. Acute or chronic L-arginine alone

had no motor impairing effect, both in the rotarod and

in the chimney test. The lack of effect of L-arginine

on the tolerance to diazepam in the chimney test is

difficult to explain. Some studies have shown that

L-arginine up to 1000 mg/kg was effective without

impairing open-field locomotor activity in mice [50,

51]. Therefore, it is possible that too low, inefficient

doses of the NO precursor which was used in our ex-

periments (up to 250 mg/kg) would account for the

lack of effect of L-arginine on the tolerance to diaze-

pam in the chimney test. However, clear effect of

L-arginine in the rotarod test seems to confirm the

role of NO in the development of tolerance to motor

impairing effect of diazepam.

The involvement of the NO system in tolerance

phenomenon and the effects of NO synthase inhibi-

tors on adaptive mechanisms related to dependence

on drugs have been the subject of numerous studies

in which controversial results were obtained. For ex-

ample, it was shown that the inhibition of NOS by

L-NAME, L-NOARG and 7-nitroindazole blocked

the rapid development of tolerance to the motor im-

pairment and hypothermia induced by ethanol [21, 22,

55]. Moreover, the blockade of NOS also affected

adaptive mechanisms associated with dependence on

other drugs, such as the sensitization to nicotine [39],

cocaine or methamphetamine [20] or the development

of tolerance to morphine [27, 28]. But still there is no

so many investigations which determine the role of

NO in the development of tolerance to benzodiazepi-

nes. Nidhi et al. [31] showed that L-NOARG did not

prevent the development of tolerance to the anticon-

vulsant activity of diazepam in rats. Furthermore, they

observed that L-arginine, a donor of NO, was able to

inhibit tolerance to diazepam anticonvulsant effect.

These discrepant results imply that processes lead-

ing to the development of tolerance to different be-

havioral effects of benzodiazepines may involve dis-

tinct mechanisms which may be differentially ma-

nipulated. For example, it has been suggested that the

mechanisms underlying tolerance to the anxiolytic ef-

fects of diazepam may be different from that underly-

ing tolerance to sedation [11].

The mechanisms by which NOS inhibitors affect

benzodiazepine tolerance are complex and not fully

understood. It is presumed that chronic treatment with

NOS inhibitors and diazepam would lead to preven-

tion of GABAA receptor down-regulation and/or glu-
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tamate receptor up-regulation. This possible mecha-

nism could explain the inhibition of diazepam-induced

tolerance by NOS inhibitors, observed in our experi-

ments. On the contrary, administration of L-arginine,

a donor of NO, with diazepam could facilitate up-regu-

lation of NMDA receptors and consequently simplify

the development of diazepam tolerance. However, fur-

ther studies are required to clarify the precise mecha-

nisms underlying our findings, because the presence of

other interactions in the CNS could not be excluded.

In conclusion, our results show that both nonselec-

tive NOS inhibitors (L-NAME, L-NOARG) and selec-

tive nNOS inhibitor (7-nitroindazole) can prevent the

development of tolerance to the motor impairing effect

of diazepam. The present study also demonstrates that

L-arginine, a donor of NO, is able to facilitate the de-

velopment of tolerance to diazepam in the rotarod test.

Furthermore, our findings suggest that NO may play

some role in the mechanisms of diazepam-induced tol-

erance to its motor impairing effect in mice.
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