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Abstract:

Olfactory bulbectomy (OB), a preclinical model of depression, has most often been performed and validated in rats, but not as com-

prehensively in other rodent species. This study demonstrated that bulbectomy induced a hyperactive response in the open field test

in three rodent species, namely the rat, mouse and hamster. OB, in all species, produced an increase in the distance travelled in the pe-

rimeter of the arena. The OB mouse was the only species to demonstrate increased distance travelled in the central part of the arena.

These behavioral disturbances were attenuated in all species following chronic treatment with the antidepressant imipramine.
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Introduction

Animal models of depression provide valuable pre-

clinical information on the underlying pathophysiolo-

gy of depression and in screening potential therapeu-

tic agents for antidepressant activity. One well-cha-

racterized model is the olfactory bulbectomized (OB)

rat, which exhibits a number of behavioral, neuro-

chemical, neuroendocrine and immune alterations

correlating with changes observed in depressed pa-

tients [2, 3, 16]. Of the behavioral changes which oc-

cur following bulbectomy, hyperactivity in the open

field, a novel exploratory environment, responds se-

lectively to chronic antidepressant treatment thus

mimicking the clinical time-course of antidepressant

action [3, 18]. The necessity for repeated antidepres-

sant administration to correct the behavioral aberra-

tion observed in the open field test distinguishes the

OB model from many other simulations of depression

and tests of antidepressant action in rodents.

In certain instances, the use of alternative species

to the rat, such as the mouse or hamster is desirable in

preclinical evaluations due to cost, space, amount of

compound required and genomic similarities. Over

40 different strains of genetically-modified mice have

been identified as demonstrating phenotypes related

to depression or antidepressant action [1], therefore,

developing animal models of depression in mice is
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advantageous. In addition, receptor families such as

the tachykinin NK1 and serotonin 5-HT1B receptors,

which have potential relevance to antidepressant ac-

tivity, exhibit reduced homology between the human

and the rat/mouse receptor [10, 14]. In such cases, the

antidepressant activity of compounds acting at these

receptors must be assessed in models developed in

species with greater homology to human receptor

pharmacology such as the hamster, gerbil and guinea

pig. Acute stress-based models of depression such as

the forced swim test, tail suspension test, learned

helplessness and neonatal vocalization have been suc-

cessfully adapted for the mouse [2, 13, 16], gerbil

[19] and guinea pig [4, 15]. However, there is a pau-

city of tests validated in alternate rodent species to the

rat that respond to chronic antidepressant treatment.

Although some studies have examined behavioral

responses of OB in mice [11, 20] and hamsters [12]

few have validated the model in these species by in-

vestigating the effect of antidepressant treatment. The

goal of the present study was to assess the behavioral

response of bulbectomized rats, mice and hamsters in

the open field arena test. Where possible, the choice

of strain was comparable with previous studies [7, 8,

11, 20]. The effect of chronic imipramine treatment

on OB-related hyperactivity in each of the three spe-

cies was also determined.

Materials and Methods

Animals

Experiments were conducted on male Sprague

Dawley rats (weight at start of experiment 220–270 g;

Harlan-Olac, UK), Golden Syrian hamsters (80–100 g;

Harlan-Olac, UK) and C57/Bl6j mice (25–35 g; Ban-

tin & Kingman, UK). All animals were housed singly

in a plastic bottomed cage (45 × 25 × 20 cm) contain-

ing wood shavings as bedding. The animals were

maintained at a constant temperature (20 ± 2°C) and

at standard lighting conditions (12:12 h light/dark,

lights on from 08:00 to 20:00 h). Food and water were

available ad libitum. The experimental protocol was

carried out in accordance with the guidelines of the

Animal Welfare Committee, National University of

Ireland, Galway under licence from the Irish Depart-

ment of Health and Children and in compliance with

the European Communities Council directive 86/609.

Bilateral olfactory bulbectomy (OB) surgery

Bilateral OB was preformed on rats and mice anes-

thetized with chloral hydrate (375 and 750 mg/kg

intraperitoneal (ip) respectively; Merck, Germany) or

on hamsters anesthetized with sodium thiopentone

(100 mg/kg, ip; Ciba-Geigy, UK). The procedure was

essentially as previously outlined for rats [18] and

mice [11, 20]. In brief, the head was shaven and

a midline sagittal incision was made in the skin over-

lying the skull. Two burr holes of 2 mm diameter were

drilled into the skull of the rat, 5 mm rostral to bregma

and 2 mm lateral to the midline. In contrast, for both

mice and hamsters a single burr hole of 2 mm was

drilled 2 mm rostral to bregma and on the midline. In

all cases, the olfactory bulbs were removed by gentle

aspiration with a water vacuum pump and care was

taken not to damage the frontal cortex. The burr

hole(s) were then plugged with a hemostatic sponge

to control bleeding. Sham-operated animals were

treated in the same manner but the bulbs were left in-

tact. All animals were allowed 14 days to recover fol-

lowing surgery and handled daily throughout in order

to reduce aggressiveness that would otherwise arise.

Lesions were verified upon completion of the study

and animals were eliminated from the analysis if the

bulbs were not completely removed or if damage ex-

tended to the frontal cortex.

Drug treatment

Following recovery from surgery, animals were ran-

domly assigned to either drug or vehicle treatment

(0.89% NaCl) groups. The tricyclic antidepressant

(TCA) imipramine (Sigma, UK) was administered to

rats at 10 mg/kg/day subcutaneously (sc) for 2 weeks.

Mice received vehicle or imipramine, by the ip route

at 40 mg/kg/day for 5 weeks. Hamsters received vehi-

cle or imipramine (10 mg/kg/day, sc) for 2 weeks. For

each experiment the dose and route employed were

determined by prior studies where body weight and

nocturnal home cage activity were employed as toler-

ability indices.

Open field test

The open field consisted of a white circular base

(75 cm in diameter) surrounded by an aluminium wall

60 cm high. On the experimental day, each animal

was placed singly into the open field apparatus (lux
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100–200) and locomotor activity was assessed using

an electronic video tracking system (Noldus Etho-

Vision Version 3). Automated behavioral tracking

systems such as EthoVision, provide an objective

measure of behavioral output [9], allowing for com-

parisons to be made between studies. Locomotor ac-

tivity (distance travelled: cm) was monitored in

minute intervals for the entire duration of the test pe-

riod (5 min). Locomotor activity on the perimeter of

the arena and central area of the arena were deter-

mined to assess thigmotactic and exploratory behavior

respectively. The central arena was defined as the area

within the open field 10 cm from the outside wall (di-

ameter 55 cm). Performance in the open field was as-

sessed 24 h following imipramine administration in

order to minimize acute behavioral effects of the drug.

Statistical analysis

Analyses were performed using a two-way ANOVA

with lesion (Sham and OB) and drug treatment (Imi-

pramine and Vehicle) as factors using a GB-STAT

(Version 8) statistical package. Comparisons were

made between Sham + vehicle vs. OB + vehicle,

Sham + vehicle vs. Sham + imipramine and OB + ve-

hicle vs. OB + imipramine using a Student Newman

Keuls (SNK) post-hoc comparison test where appro-

priate. Data were deemed significant when p < 0.05.

Results

Rat

ANOVA of distance travelled showed an effect of OB

[F(1, 28) = 5.37 p = 0.029] and imipramine [F(1, 28)

= 6.99 p = 0.014]. Post-hoc comparisons revealed that

OB rats exhibited hyperactivity in the open field arena

compared to sham-operated controls (p < 0.05).

Chronic imipramine administration attenuated the

OB-induced hyperactivity when compared to their

vehicle-treated counterparts (p < 0.05) (Fig. 1).

ANOVA of distance travelled in the outer perimeter of

the arena showed an effect of OB [F(1, 28) = 5.41

p = 0.029] and imipramine [F(1, 28) = 7.79 p = 0.010].

Post-hoc comparisons revealed that OB increased dis-

tance travelled when compared to sham-operated con-

trols (p < 0.05) (Tab. 1). Chronic imipramine treat-

ment attenuated the OB-related increase in distance

travelled in the outer perimeter when compared to

their vehicle-treated counterparts (p < 0.05). ANOVA

of distance travelled in the inner arena showed an ef-

fect of imipramine [F(1, 28) = 6.15 p = 0.020]. Post-

hoc comparisons revealed no significant differences

between the groups (Tab. 1).

Mouse

ANOVA of the distance travelled showed an effect of

OB [F(1, 27) = 31.44 p < 0.001] imipramine [F(1, 27)

= 7.70 p = 0.011] and OB x imipramine interaction

[F(1, 27) = 6.16 p = 0.021]. Post-hoc analysis re-

vealed an increase in distance travelled in OB mice

upon exposure to the open field when compared to

sham-operated controls (p < 0.01). Chronic imipramine

administration attenuated the OB-induced hyperactiv-

ity following 5 weeks of treatment when compared to

their vehicle-treated counterparts (p < 0.01) (Fig. 1).

ANOVA of distance travelled in the outer perimeter

showed an effect of OB [F(1, 27) = 22.28 p < 0.001]

imipramine [F(1, 27) = 6.53 p = 0.017] and OB x imi-

pramine interaction [F(1, 27) = 5.36 p = 0.030]. Post-

hoc comparisons revealed that OB induced an in-

crease in distance travelled when compared to sham-

operated controls (p < 0.01). Chronic imipramine

treatment attenuated the OB-related increase in dis-
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tance travelled in the outer arena when compared to

their vehicle-treated counterparts (p < 0.01) (Tab. 1).

ANOVA of distance travelled in the inner arena

showed an effect of OB [F(1, 27) = 43.86 p < 0.001]

and imipramine [F(1, 27) = 4.74 p = 0.039]. Post-hoc

analysis revealed that chronic imipramine treatment

attenuated the OB-induced increase in distance trav-

elled in the inner arena when compared to their

vehicle-treated counterparts (p < 0.05) (Tab. 1).

Hamster

ANOVA of the distance travelled showed an effect of

OB [F(1, 21) = 9.36 p = 0.007] and an OB × imi-

pramine interaction [F(1, 21) = 5.41 p = 0.032]. Post-

hoc comparisons revealed an increase in distance

travelled of OB hamsters in the open field arena when

compared to sham-operated controls (p < 0.01). Chronic

imipramine treatment attenuated the OB-related hy-

peractivity in hamsters (p < 0.01) when compared to

their vehicle-treated counterparts (Fig. 1). ANOVA of

distance travelled in the outer perimeter showed an ef-

fect of OB [F(1, 21) = 9.27 p = 0.007] and an OB ×

imipramine interaction [F(1, 21) = 6.09 p = 0.024].

Post-hoc comparisons revealed that OB induced an in-

crease in distance travelled when compared to sham-

operated controls (p < 0.01). Chronic imipramine treat-

ment attenuated the OB-induced hyperactivity when

compared to vehicle-treated counterparts (p < 0.05).

ANOVA of distance travelled in the inner arena

showed no effect of OB, imipramine or an interaction

effect (Tab. 1).

Discussion

The data presented in this study confirm previous

findings of OB-induced hyperactivity in the rat [3, 7,

8] and mouse [20] in the open field test, and extend

these to include the hamster. This is the first study to

demonstrate that OB-related hyperactivity generalizes

to various rodent species and that such hyperactivity

is sensitive to chronic imipramine administration.

OB rats and hamsters exhibited comparable in-

creases (~180%) in activity over the 5-min test period

when compared to their sham-operated counterparts.

The extent of the increase in activity in the OB rat is

similar to that reported in other studies [4, 20]. Hyper-

activity in both the OB rat and hamster was attributed

to an increase in activity in the perimeter of the test

arena as opposed to increased activity throughout the

open field arena. This pattern of hyperactivity was at-

tenuated following chronic imipramine treatment in

both rats and hamsters. Mice displayed the greatest

OB-induced increase in activity (320%) when com-

pared to sham-operated controls indicating a more

pronounced response in this species under similar test

conditions. In contrast to the rat and hamster, OB-

induced hyperactivity in the mouse can be attributed

to both increased activity in both perimeter and cen-

tral zones of the open field arena. Increased explora-

tion of the central zone of the test arena suggests

a pattern of reduced defensive behaviour [17] which

may stem from neurobiological changes in brain areas

associated with defensive behaviors such as the
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S + V S + IMI OB + V OB + IMI

Rat Perimeter 2120 ± 277 1683 ± 316 3102 ± 176* 1991 ± 300�

Central Arena 51 ± 19 32 ± 11 69 ± 9 23 ± 12

Mouse Perimeter 547 ± 82 482 ± 76 2452 ± 422** 1134 ± 226��

Central Arena 97 ± 21 76 ± 15 601 ± 60** 362 ± 108�

Hamster Perimeter 1173 ± 165 1417 ± 246 2356 ± 180** 1540 ± 224�

Central Arena 248 ± 76 265 ± 57 312 ± 69 277 ± 58
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amygdala. The large increase in locomotor activity in

the OB mouse and potentially the strain of mouse

used [5, 6] may account for the increased treatment

time required for the antidepressant response to de-

velop (5 weeks) when compared to the rat and ham-

ster (2 weeks).

In conclusion, the present results demonstrate that

the OB model of depression and antidepressant action

generalizes to rat, mouse and hamster rodent species.

The additional characterization of the model in mice

creates opportunities for the use of transgenic mice to

explore neurobiological substrates underlying antide-

pressant action in the model. Moreover, development

of the model in hamsters should facilitate research on

new antidepressant therapies in those species with

greater pharmacological homology to the human.
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