

## Effects of 3-aminopyridine-induced seizures on platelet eicosanoid synthesis

Gábor Csányi<sup>1</sup>, Béla Kis<sup>1</sup>, Árpád Gecse<sup>1</sup>, Gyula Telegdy<sup>1</sup>, Zoltán Szupera<sup>2</sup>, László Vécsei<sup>2,4</sup>, Magdolna Szente<sup>3</sup>, István Leprán<sup>5</sup>, Zsófia Mezei<sup>1</sup>

Correspondence: Zsófia Mezei, e-mail: mezeizsofia@gmail.com

## Abstract:

We investigated the influence of recurrent epileptic seizures on the arachidonic acid (AA) cascade in platelets and brain microvessels, using [14C]AA as a tracer substrate and chromatographic determination. The recurrent epileptic seizures of male Wistar rats were induced every second day with 3-aminopyridine (3-AP, 25 mg/kg *ip*) for two weeks.

In the chronic 3-AP model, the earlier epileptic insults resulted in a decreased incidence of limbic seizures and higher survival rate at later administration of 3-AP. After 3-AP treatment, the formation of lipoxygenase products was unchanged, but the total amount of cyclooxygenase (COX) metabolites was decreased both in platelets and brain microvessels. The reduction in COX-mediated eicosanoid synthesis after recurrent seizures was due to the decreased synthesis of vasodilator and vasoconstrictor COX metabolites. In platelets, the 3-AP-treatment reduced the synthesis of vasodilator prostacyclin (PGI<sub>2</sub>), prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) and 12-L-hydroxy-5,8,10-heptadecatrienoic acid (12-HHT), while the synthesis of prostaglandin D<sub>2</sub> (PGD<sub>2</sub>) remained unchanged. In isolated brain capillaries, the PGD<sub>2</sub>, PGE<sub>2</sub> and 12-HHT synthesis was decreased after recurrent seizures. As for the vasoconstrictor COX metabolites, both platelets and brain microvessels synthesized significantly lesser amount of prostaglandin  $F_{2\alpha}$  (PGF<sub>2 $\alpha$ </sub>) and thromboxane A<sub>2</sub> (TxA<sub>2</sub>) upon 3-AP administration.

Our results indicate that platelets and isolated brain capillaries synthesize significantly lesser amount of COX metabolites after chronic 3-AP treatment. The decreased conversion of AA into different COX products may play a role in the neuroprotective/preconditional adaptation of the brain against subsequent seizures.

## Key words:

seizure, platelets, eicosanoids, 3-aminopyridine, prostaglandins, brain microvessels

<sup>&</sup>lt;sup>1</sup>Department of Pathophysiology, Faculty of Medicine, University of Szeged, Semmelweis 1, 6725 Szeged, Hungary

<sup>&</sup>lt;sup>2</sup>Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis 6, 6725 Szeged, Hungary

<sup>&</sup>lt;sup>3</sup>Department of Comparative Physiology, University of Szeged, Középfasor 52, 6726 Szeged, Hungary

<sup>&</sup>lt;sup>4</sup>Neurology Research Group of the Hungarian Academy of Sciences, Semmelweis 6, 6725 Szeged, Hungary

<sup>&</sup>lt;sup>5</sup>Department of Pharmacology and Pharmacotherapy, University of Szeged, Dom square 12, 6720 Szeged, Hungary