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Abstract:

To study the influence of the central noradrenergic system on sensitivity to sedative-hypnotic effects mediated by the aminobutyric

acid (GABA) system, intact rats were contrasted with rats in which noradrenergic nerves were largely destroyed shortly after birth

with the neurotoxin DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine; 50 mg/kg sc x2, P1 and P3]. At 10 weeks, loss of the

righting reflex (LORR) was used as an index to study the acute sedative-hypnotic effects of phenobarbital (100 mg/kg ip) and etha-

nol (4 g/kg ip, 25% v/v). Additionally, GABA concentration in the medial prefrontal cortex (PFC), hippocampus, cerebellum and

brainstem was estimated by an HPLC/ED method. Neonatal DSP-4 treatment diminished the sedative-hypnotic effects of both phe-

nobarbital and ethanol in adult rats. While the endogenous GABA content in the PFC, hippocampus, brainstem and cerebellum of

DSP-4-treated rats was not altered, phenobarbital significantly decreased GABA content of both intact and DSP-4-lesioned rats by

~40% in the hippocampus and by ~20% in other brain regions at 1 h. Ethanol reduced GABA content by ~15–30% but only in the

hippocampus and brainstem of both intact and lesioned rats. These findings indicate that the noradrenergic system exerts a promi-

nent influence on sedative-hypnotics acting via GABAergic systems in the brain without directly altering GABAlevels in the brain.
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Abbreviations: DOPAC – 3,4-dihydroxyphenylacetic acid,

DSP-4 – N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine,

GABA – �-aminobutyric acid, 5-HT – 5-hydroxytryptamine,

5-HIAA – 5-hydroxyindoleacetic acid, LC – locus coeruleus,

MOPEG – 3-metoxy-4-hydroxyphenylglycol, NA – noradrena-

line, PFC – prefrontal cortex
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Introduction

The midbrain locus coeruleus (LC) contains most

noradrenergic neurons that project to the forebrain

[8]. LC neurons modulate numerous functions (e.g.,

sleep-wake cycle, attention, learning and memory,

vigilance, mood, and opioid withdrawal) [2], and rep-

resent a cellular target for a large array of drugs used

in the treatment of neurological and psychiatric disor-

ders [34, 39, 41]. LC activity is tightly controlled by

presynaptic �2 autoreceptors [38] and also by afferent

pathways from several brain areas [24]. Among these,

serotonin- and �-aminobutyric acid (GABA)-containing

neurons seems to play a major role [1]. Anatomical

relationships between the LC and the GABA neurons

suggest the existence of a functional interaction be-

tween noradrenergic and GABAergic systems. It was

shown that the discharge rate (of neurons) and release

of noradrenaline (NA) were under the inhibitory con-

trol of GABA, acting via GABAA receptors [22, 37,

44]. Conversely, the noradrenergic system is also in-

volved in the regulation of basal GABA release that is

possibly mediated via �1A and �2-adrenoceptor acti-

vation [25, 27].

Recently, we re-established a neonatal NA lesion

model [5, 31]. In brief, N-(-2-chloroethyl)-N-ethyl-2-

bromobenzylamine (DSP-4; 50 mg/kg sc per day) in-

jected two times (on the 1st and 3rd days of postnatal

life) alters noradrenergic input to the hippocampus

and prefrontal cortex (PFC) (endogenous NA content

was reduced by 98.5% and 95.0%, respectively), with-

out impairing dopaminergic and serotonergic input to

these regions. In the present paper, we also demon-

strated the elevated NA level in the brainstem and

cerebellum in those DSP-4-treated rats. As we have

shown, this model represents a good “tool” for study-

ing interactions between particular neurotransmitter

systems [10, 31]. Examination of the GABA-NA in-

teraction in neonatally lesioned rats enables us to bet-

ter understand compensatory processes arising conse-

quent to ontogenetic noradrenergic neuronal denerva-

tion. This phenomenon may be of major importance,

because NA deficiency is associated with a number of

neurological and neuropsychiatric disorders, includ-

ing depression [40], Parkinson’s disease [29], and

Alzheimer’s disease [16]. Conversely, there is a pau-

city of data concerning the function of the GABA-

ergic system in DSP-4-lesioned animals. Recently, we

determined that neonatal DSP-4 treatment modified

the convulsant effect of bicuculine and pentetrazole in

adult rats [4]. We also established that administration

of the GABA transaminase inhibitor (vigabatrin)

caused an increase in GABA level in PFC in control

and DSP-4 groups of animals; however, it contributed

to a 2-fold higher increase in the extracellular GABA

concentration in DSP-4-lesioned rats compared to

control animals [3]. Taking the above into considera-

tion, the aim of the present study was to analyze the

compensatory processes which develop during post-

natal ontogeny in the GABAergic system, following

chemical ablation of noradrenergic neurons. It is be-

lieved that this work provides greater in-depth analy-

sis of the consequences of NA perturbation to GABA-

ergic systems.

Materials and Methods

Animals and treatment

Wistar rats (University Animal Department, Katowice,

Poland) were housed under controlled environmental

conditions, in a well-ventilated room, at 22 ± 2°C and

under a 12 h light : 12 h dark cycle (lights on from

7:00 a.m. to 7:00 p.m.). Animals received food and

water ad libitum. Offspring rats were weaned at

21 days, and segregated by sex. Experiments were

carried out in the morning in only male rats, handled

in accordance with the principles and guidelines de-

scribed in the NIH Guide for the Care and Use of

Laboratory Animals. All procedures were reviewed

and approved by the Local Bioethical Committee for

Animal Care.

The central noradrenergic system of newborn rats

was lesioned with DSP-4 (Sigma, St. Louis, MO,

USA). Rats were injected on the 1st and 3rd day of

postnatal life with either DSP-4 (50 mg/kg sc) or

0.9% NaCl (1.0 ml/kg sc). DSP-4 was dissolved in

distilled water immediately before injection. The dose

and the days of injection were chosen on the basis of

the works of Jonsson et al. [21] and Brus et al. [5],

and were consistently proven to reduce endogenous

NA content in the PFC and hippocampus by 95–99%.

Rats continued to be housed as above until 8th–10th

week, for further experimentation.
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Assessment of GABA content in the brain

At 8th week after birth, groups of control and DSP-4-

treated rats (6 per group) were decapitated 60 min

after administration of phenobarbital (100 mg/kg ip)

or ethanol (4.0 g/kg ip). Respective controls received

0.9% NaCl (1.0 ml/kg ip). The PFC, hippocampus,

brainstem and cerebellum were rapidly dissected and

placed on dry ice, weighed, and stored at –70°C, pend-

ing assay. Samples were homogenized for 15–20 s in

ice-cold 0.1 M HClO4 (Fluka, Steinheim, Switzer-

land) and left thereafter for 20 min at 4°C to be depro-

teinized. Then they were centrifuged (5,000 × g, 5 min)

to remove precipitated protein. Supernatants were fil-

tered through 0.2 �m cellulose membranes (Titan MSF

Microspin filters, Scientific Resources Inc., Eaton-

town, GB) and were derivatized with OPA/Sulfite.

Stock solutions of the OPA/Sulfite derivatizing rea-

gent were prepared by dissolving 22.0 mg o-phthal-

dialdehyde (OPA) (Sigma, St. Louis, USA) in 0.5 ml

of absolute ethanol (POCH S.A. Gliwice, Poland).

A 0.5 ml volume of 1.0 M Na2SO4 (Z.Ch. “Organica-

Sarzyna”, Nowa Sarzyna, Poland) was added fol-

lowed by 9.0 ml of 0.1 M Na2B4O7 (POCH S.A., Gli-

wice, Poland) adjusted to pH 10.4 with 2.0 M NaOH.

The working OPA/Sulfite solution was prepared by

diluting 50 ml of OPA/Sulfite stock solution with 5 ml

of deionized water. Precolumn GABA derivatization

was performed by mixing 20 �l of the working

OPA/Sulfite solution with 20 �l of GABA standard or

sample for 10 min at room temperature before analy-

sis. Samples prepared in this way were injected onto

the HPLC column. GABA levels were assayed by

HPLC/ED [11, 43]. The composition of the mobile

phase was: 100 mM NaH2PO4 (Sigma, St. Louis,

USA) and 25% (v/v) methanol (Sigma, St. Louis,

USA), pH 5.2 adjusted with 2.0 M NaOH. The flow

rate was maintained at 1.0 ml/min, temperature at

22°C, oxidation potential at +700 mV and sensitivity

at 100 nA/V. Peaks were automatically integrated by

universal chromatographic interface UCI-100 (Di-

onex Softron GmbH, Germering, Germany). The in-

strumentation included an electrochemical detector

(Gilson Villiers-le-Bel, France) model 141 with flow

cell, piston pump model 302 with head 5SC (Gilson,

Villiers-le-Bel, France), manometric module model

802 (Gilson, Villiers-le-Bel, France), thermostat for

STH 595 column (Dionex Softron GmbH, Germering,

Germany) and chromatographic column HR-80 C18,

80 × 4.6 mm, 3 �m (ESA Inc., Chelmsford, USA).

Assessment of biogenic amine and metabolite

content

At 8th week after birth control and DSP-4-treated rats

(6 per group) were decapitated. The PFC, hippocam-

pus, brainstem and cerebellum were rapidly dissected

and placed on dry ice, weighed and stored at –70°C,

pending assay. Samples were homogenized for 15–20 s

in ice-cold trichloroacetic acid (0.1 M), containing

0.05 mM ascorbic acid. After centrifugation (5,000 × g,

5 min), supernatants were filtered through 0.2 �m cel-

lulose membranes (Titan MSF Microspin filters, Scien-

tific Resources Inc., Eatontown GB) and supernatants

was injected onto the HPLC/ED column. Levels of

noradrenaline (NA), 3-methoxy-4-hydroxyphenylglycol

(MOPEG), dopamine (DA), 3,4-dihydroxyphenylace-

tic acid (DOPAC), 5-hydroxytryptamine (5-HT) and

5-hydroxyindoleacetic acid (5-HIAA) were assayed

by HPLC/ED [31]. The composition of the mobile

phase was: 75 mM NaH2PO4, 1.7 mM 1-octanesulfo-

nic acid, 5 �M EDTA (Avocado, Research Chemical

Ltd., Morecambe, GB), 100 �l triethylamine (Sigma,

St. Louis, USA), 9.5% acetonitrile (J.T. Baker, De-

venter, Holland), pH 3 adjusted with phosphoric acid

(Fluka, Steinheim, Switzerland). The flow rate was

maintained at 0.7 ml/min, at a temperature of 22°C,

and the oxidation potential was fixed at +700 mV,

10 nA/V sensitivity. Peaks were automatically inte-

grated by universal chromatographic interface UCI-100

(Dionex Softron GmbH, Germering, Germany). The

instrumentation included an electrochemical detector

(Gilson, Villiers-le-Bel, France) model 141 with flow

cell, piston pump model 302 with head 5SC (Gilson,

Villiers-le-Bel, France), manometric module model

802 (Gilson, Villiers-le-Bel, France), thermostat for

STH 595 column (Dionex Softron GmbH, Germering,

Germany), precolumn Hypersil BDS C18, 10 × 4 mm,

3 �m (ThermoQuest, Waltham, GB) and chroma-

tographic column Hypersil BDS C18, 250 × 4.6 mm,

3 �m (ThermoQuest, Waltham, GB).

Loss of righting reflex test

Loss of righting reflex test is a simple and reliably

measured behavior which has been widely used to

study mechanisms of action of sedative-hypnotic drugs.

Rats of both tested groups (control and DSP-4) were

observed for hypnotic sensitivity to phenobarbital and

ethanol by measuring both duration of the loss of

righting reflex and sleep time. The testing procedure
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consisted of ip injection of either phenobarbital (100

mg/kg) or ethanol (4 g/kg, 25% v/v) to rats, and plac-

ing them on their back in a V-shaped trough after loss

of the righting reflex. Sleep time was recorded as the

time period between loss and regaining of the righting

response. Animals were considered to have regained

the righting response after righting themselves three

times in 30 s [9, 14].

Statistical analysis

Group differences in GABA were assessed by an ana-

lysis of variance (ANOVA) and the post-ANOVA test

of Newman-Keuls. Group differences in behavioral

studies were analyzed by Student’s t-test. A p value

< 0.05 was taken as the level of significant difference.

Results

Effect of DSP-4 treatment on GABA concentra-

tion in the PFC, hippocampus, brainstem and

cerebellum of rats

In rats treated on the 1st and 3rd days of postnatal life

with DSP-4 (50 mg/kg sc), and sacrificed at 8 weeks,

the endogenous GABA content in the frontal cortex,

hippocampus, brainstem and cerebellum was not dif-

ferent from control (Fig. 1, 2).

Phenobarbital (100 mg/kg ip) significantly reduced

GABA concentration at 1 h in the PFC, hippocampus

and brainstem of control and DSP-4 treated rats, and

the magnitude of that effect was similar in both

groups. Similar-effect was observed in the cerebellum,

but the GABA level was significantly decreased only

in control rats (Fig. 1).

Ethanol (4.0 g/kg ip) also reduced GABA concen-

tration at 1 h in the hippocampus and brainstem, to

a similar extent in control and DSP-4 groups, but was

without effect in the PFC and cerebellum (Fig. 2).

Effect of DSP-4 treatment on biogenic amine

and metabolite levels in the PFC, hippocampus,

brainstem and cerebellum

DSP-4 treatment on the 1st and 3rd days of postnatal

life with a dose of 50 mg/kg sc, reduced NA contents

of the PFC and hippocampus by 95.0% and 98.5%,

respectively (p < 0.01). Conversely, the concentration

of NA in the brainstem was elevated by approx.

42.8% and in the cerebellum by 34.6% in comparison

to control (p < 0.05). MOPEG and DA were increased

only in the brainstem of DSP-4-treated rats. In the
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PFC, hippocampus brainstem and cerebellum, there

was no consistent change in the DA and its metabolite

DOPAC nor in 5-HT and its metabolite 5-HIAA

(Tab. 1).

Effect of DSP-4 treatment on the hypnotic

effect of ethanol and phenobarbital

Phenobarbital (100 mg/kg ip) produced a greater loss

of the righting reflex in DSP-4 rats versus controls

(1450.1 ± 231.7 vs. 976.8 ± 169.2 s, respectively).

Conversely, phenobarbital-induced sleep time was

virtually identical in both groups (179.1 ± 21.2 vs.

186.4 ± 25.9 s, respectively) (Fig. 3).

After ethanol injection (4.0 g/kg ip) time to loss of

righting reflex was comparable in control and DSP-

4-treated rats (163.4 ± 18.3 vs. 158.5 ± 17.8), while

sleep time was significantly shortened in the DSP-4

group (258.1 ± 42.7 vs. 197.7 ± 37.4) (Fig. 4).

Discussion

The major findings of the present study are that

1) neonatally DSP-4-lesioned rats are less vulnerable

to sedative-hypnotic effects of phenobarbital and etha-

nol. Additionally, 2) there was no significant change
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Examined brain
structures

Groups NA
(ng/g)

MOPEG
(ng/g)

DA
(ng/g)

DOPAC
(ng/g)

5-HT
(ng/g)

5-HIAA
(ng/g)

Frontal cortex Control 483 ± 29 208 ± 13 264 ± 29 54 ± 4 281 ± 21 119 ± 10

DSP-4 24 ± 3** 163 ± 11 271 ± 42 61 ± 8 216 ± 32 115 ± 17

Hipocampus Control 392 ± 13 140 ± 6 8 ± 1 Not detected 275 ± 9 146 ± 6

DSP-4 6 ± 1** 117 ± 7 2 ± 0 Not detected 208 ± 15 150 ± 7

Brainstem Control 513 ± 41 275 ± 23 28 ± 2 13 ± 2 376 ± 55 270 ± 23

DSP-4 733 ±45* 351 ± 25* 33 ± 1* 12 ± 1 382 ± 11 236 ± 15

Cerebellum Control 234 ± 22 503 ± 18 5 ± 1 6 ± 1 47 ± 8 60 ± 5

DSP-4 315 ± 19* 537 ± 22 3 ± 0 6 ± 0.5 45 ± 2 37 ± 1*
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in GABA concentration of the PFC, hippocampus,

cerebellum and midbrain of DSP-4-lesioned rats.

There is a large body of literature data associating

the noradrenergic system with regulation of the sensi-

tivity to GABA-mimetics (i.e., anesthetic response to

barbiturates, hypnotic effect of ethanol, anxiolytic ef-

fect of phenobarbital, alprazolam or susceptibility to

convulsant action of bicuculine and other GABAergics)

[6, 13, 15, 18]. Yet, there are no data regarding such

an association in neonatally DSP-4-treated animals.

Neonatal treatment with neurotoxins, such as 6-hy-

droxydopamine or DSP-4 produces marked impair-

ment in development of the central noradrenergic sys-

tem (i.e., permanent and robust NA-denervation of

the PFC and hippocampus, accompanied by NA hy-

perinnervation of brainstem and cerebellum [20, 28].

It is noteworthy that NA hyperinnervation is not ob-

served in rodents lesioned with DSP-4 as adults [20,

21]. The latter treatment may serve as a model for

examination of NA deficiency which is thought to be

associated with a number of neurological and neuro-

psychiatric diseases, including depression, Parkinson’s

disease, and Alzheimer’s disease [47]. Conversely, neo-

natal DSP-4 treatment model may be applied for mo-

deling of childhood disorders. Previously, we devel-

oped an animal (rat) model of attention-deficit-hyper-

activity disorder (ADHD) based on severe neonatal

DA depletion with simultaneous partial serotonergic

fiber lesion in adulthood. Our preliminary findings

[3–5, 10] have confirmed the hypothesis that rats le-

sioned as neonates with DSP-4 represent another

good model for such studies.

As mentioned above, NA has a prominent role in

the regulation of attention, arousal, cognitive pro-

cesses, anxiety, and nociception – all of which are po-

tential targets for anesthetic actions. It is well-known

that drugs, such as etomidate, ketamine, pentobarbi-

tal, diazepam, halothane, etc., strongly influence nor-

adrenergic system activity (e.g., NA release, NA turn-

over and NA content throughout brain) [17, 19, 33].

In contrast, noradrenergic activity affects barbiturate

anesthesia [26, 32]. Sedative-hypnotic effects relating

to that, also apply to ethanol [23, 46]. Spuhler et al.

[43] determined that in selectively-bred ethanol-

sensitive and -insensitive mice, adult treatment with

DSP-4 did not alter the sensitivity to ethanol, assessed

by loss of the righting response. Therefore, although

synaptically-released monoamines may influence

ethanol responses, it was considered that NA probably

did not directly mediate differences in behavioral sen-

sitivity to ethanol in these mouse lines. The above

findings contrast with the present results. In the neo-

natal model of DSP-4 treatment, we show that onset

of anesthesia (loss of righting reflex) after ethanol

(4.0 g/kg ip) was comparable in control and DSP-4

treated rats, but the duration of anesthesia (sleep time)

was significantly shortened in the DSP-4 group

(Fig. 3). Conversely, after phenobarbital (100 mg/kg

ip) there was an increased duration of loss of the

righting reflex in DSP-4 rats versus control, but sleep

time was not different in the two groups (Fig. 4). This

seemingly is in conflict with findings by Cz³onkowski

et al. [7], but it must be noted that DSP-4 lesioning

was performed in adult rats in their study, but in neo-

natal rats in our study.

Medina and Novas [28] demonstrated that neonatal

treatment of rats with DSP-4 was associated with re-

duced benzodiazepine (BZ) receptor number in the

PFC, and increased BZ number in the cerebellum and

brainstem. It is likely that changes in BZ receptor

density account, at least in part, for the diminished

sensitivity to phenobarbital and ethanol observed in

neonatally DSP-4 lesioned rats in our study. There is

also an alternative explanation of the current results.

Matsumoto et al. [26] found that the intracerebroven-

tricular administration of methoxamine (�1-adrenocep-

tor agonist) or yohimbine (�2-adrenoceptor antagonist),

produced a dose-dependent decrease in pentobarbi-

tal-induced (50 mg/kg) sleeping time. Also, DSP-4

treatment resulted in profound changes in adrenocep-

tor density (i.e., up-regulation of �1 and �2 and � re-

ceptors) [12, 45]. Perhaps compensatory enhancement

in NA turnover as a result of DSP-4 treatment [36],

similarly to adrenergic facilitatory acting agents, con-

tributes to the reduction of phenobarbital- and etha-

nol-evoked sedative-hypnotic effects.

In the present study, we also estimated the level of

GABA in the PFC and hippocampus after phenobarbi-

tal and ethanol treatments. Noguchi and Kawai [30]

as well as Paul and Ekambaram [35] found that phe-

nobarbital and ethanol altered the content of GABA

and other neurotransmitters (e.g., glutamic acid) in

the brain. In fact, we also demonstrated that these

drugs significantly reduced GABA concentration in

the PFC, hippocampus and brainstem of control and

DSP-4-lesioned rats, with a similar magnitude of ef-

fect in both groups (Fig. 1). An analogous effect was

observed in the cerebellum, but the GABA level was

significantly decreased only in control rats. Ethanol

also reduced GABA content in the hippocampus and
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brainstem in intact and DSP-4-lesioned rats, but was

without any effect in the PFC and cerebellum (Fig. 2).

In conclusion, the present study demonstrates a pro-

minent effect of noradrenergic neurons in regulating

the sensitivity to sedative-hypnotic GABA-acting

agents, being at the same time without effect on

GABA concentration in the brain. It may be suggested

that hypoactivity of the noradrenergic pathway may

account for lower vulnerability to anesthetics.
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