1-Methylnicotinamide (MNA) prevents endothelial dysfunction in hypertriglyceridemic and diabetic rats

Magdalena Bartuś¹, Magdalena Łomnicka¹, Renata B. Kostogrys², Piotr Kaźmierczak³, Cezary Watala³, Ewa M. Słominska⁴, Ryszard T. Smoleński⁴, Paweł M. Pisulewski², Jan Adamus⁵, Jerzy Gębicki⁵, Stefan Chlopicki¹

¹Department of Experimental Pharmacology, Chair of Pharmacology, Jagiellonian University Medical College, Grzegórzecka 16, PL 31-801 Kraków, Poland
²Department of Human Nutrition, Faculty of Food Technology, Agricultural University of Kraków, Balicka 122, PL 30-149 Kraków, Poland
³Department of Haemostasis and Haemostatic Disorders, Chair of Laboratory Diagnostics, Medical University of Łódź, Żeromskiego 113, PL 90-649 Łódź, Poland
⁴Department of Biochemistry, Medical University of Gdańsk, Dębinki 1, PL 80-211 Gdańsk, Poland
⁵Institute of Applied Radiation Chemistry, Technical University, Żeromskiego 116, PL 90-644 Łódź, Poland

Abstract:
For many years, 1-methylnicotinamide (MNA), a primary metabolite of nicotinamide, has been considered inactive. Recently however, it has been discovered that MNA possesses anti-thrombotic and anti-inflammatory activity. In the present study we investigated whether chronic administration of MNA to hypertriglyceridemic or diabetic rats would reverse endothelial dysfunction characterized by the impairment of nitric oxide (NO)-dependent vasodilatation.

Hypertriglyceridemia in rats was induced by fructose-rich (60%) diet, while diabetes was induced by streptozotocin injection (70 mg/kg). After eight weeks, in hypertriglyceridemic or diabetic rats treated or non-treated with MNA (100 mg/kg), we analyzed the magnitude of endothelium-dependent or endothelium-independent vasodilatation in aorta induced by acetylcholine or S-nitroso-N-acetyl-penicillamine (SNAP), respectively, as well as plasma concentration of: cholesterol, triglycerides, glucose, HbA₁c, fructosamine, peptide C, endogenous MNA and its metabolites (M2PY, M4PY).

In diabetic rats plasma concentration of glucose, HbA₁c and fructosamine was elevated (402.08 ± 19.01 vs. 82.06 ± 5.41 mg/dl, p < 0.001; 9.55 ± 0.56 vs. 4.93 ± 0.24%, p = 0.052 and 2.53 ± 0.10 vs. 1.14 ± 0.06 mmol DTF/mg protein, p < 0.001 in diabetic and control rats, respectively). In hypertriglyceridemic rats plasma concentration of triglycerides was elevated (4.25 ± 0.27 to 2.22 ± 0.14 mmol/l, p < 0.001), and the preservation of the NO-dependent vasodilatation. In diabetic rats chronic treatment with MNA also prevented the impairment of NO-dependent vasodilatation, while it displayed only a mild effect on hyperglycemia and did not lower triglycerides concentration.

In summary, MNA treatment decreased plasma triglycerides concentration in hypertriglyceridemic, but not in diabetic rats, while it prevented the development of endothelial dysfunction in aorta in both of these models. Accordingly, the ability of MNA to reverse endothelial dysfunction seems to be independent of its hypolipemic activity.

Key words:
1-methylnicotinamide, hypertriglyceridemia, diabetes, endothelium, NO, endothelial dysfunction